

From release 0.91 to release 0.95.1

The Alt-Ergo developers team

Toccata: LRI & INRIA-Saclay

Main Changes	Evaluation	What is next?
000000000	00	0

Overview of the main changes

- arithmetic enhancements
- AC symbols
- new built-in theories : arrays, enumerated data types, records
- models / unsat cores extraction
- a graphical interface (AltGr-Ergo)
- Alt-Ergo-Zero library

Main Changes	Evaluation	What is
0000000000	00	0

next?

Arithmetic reasoning

Linear arithmetic on $\ensuremath{\mathbb{Z}}$

- a new decision procedure FM-Simplex
- good results on QF-LIA categoy of SMT benchmarks
- published at [IJCAR 2012]

Non-linear arithmetic

- Euclidean division and modulo operators
- interval calculus
- non-linear multiplication
- good results on ANR Decert benchmark

Main Changes ○○●○○○○○○○○	Evaluation	What is next?

AC Symbols

AC(X), new algorithm for combining a Shostak theory X with a decision procedure for AC symbols

- published at [TACAS 2011, LMCS 2012]
- EATCS award for Best Theoretical Paper at ETAPS 2011

```
logic ac u : int, int -> int
goal g :
forall x,y,z,a,b:int.
u(a,b)-b = x and u(a+b,c) = y and b = 0 ->
u(0,y) = u(c,x)
```

Main Changes	Evaluation	What is next?
000000000	00	0

New built-in theories

Functional arrays

logic a : (int, int) farray
goal g1 : forall i:int. i=6 -> a[i<-4][5] = a[i-1]</pre>

Records

Enumerated data types

Main 0000	Changes ●○○○○○○	Evaluation	What is next?
M	odels extraction		
	logic x "model:0", y goal g: x >= 42 -> x	"model:0" : int <> y -> y = 45 -> ((x + 1))	<= 40
	alt-ergo -model <file< th=""><th>e></th><th></th></file<>	e>	
	Propositional:	Theory:	

42 <= x x <> y y = 45 Theory: y = X1(arith):[45 [int]] x <> y

Relation: $x \in [42; 44] \cup [46; +\infty[$

Main Changes	Evaluation	What is next?
000000000	00	0
Unsat cores extraction		

alt-ergo -proof <file>

Proof:

$$4 \le x$$

y = 2
(y - x) > 0

x <> y is not used to derive the unsatisfiability

AltGr-Ergo : capabilities

- selection/deletion of axioms and hypotheses
- deletion/modification of triggers
- manual (and possibly partial) axioms instantiation
- highlight which axioms/hypotheses were useful to prove a goal
- axioms instantiation and decision procedures profiling
- save/replay modifications in/from a session file

Main Changes	Evaluation	What is next?
00000000000	00	0

AltGr-Ergo : example

▼ AltGr-Ergo				- +	·×
File Debug Options Help					
¥ 🛞 🗐 🎻 Valid (14.34 s) 🔏		С	2		
1003	Us	er i	nstant	iated axioms:	
1004 axiom def_axiom1 :					- 1
<pre>1005 a_brake_emergency_model = of_int1())</pre>					
1006 and a_brake_emergency_model1 = sec_3_13_2_monitoring_inputs701		# .	limit	Lomma	
1007 and a_brake_emergency_model2 = sec_3_13_2_monitoring_inputs7		<i>π</i>	intite	Lemma	-111
1008	U	81	00	Monotonic	
1009 type speed_t	0	39	00	coerce_axiom1	
1011 logic attr ATTRIBUTE MODULUS4 : real	0	28	00	Truncate_monotonic_int1	
1012	G	28	00	Truncate monotonic int2	
1013 predicate in_range4 (x:real) =	-				_
<pre>1014 forall x:real [in_range4(x)].</pre>	^E SA	Т	0.04 s	0 %	
1015 in_range4(x)	Ma	atching	z 0.03 s	0 %	
1016 <-> - from_int(340282346638528859811704183484516925440) <= x		00		100	\prec
1017 and x <= from_int(340282346638528859811704183484516925440)	cc	.(X)	2.30 S	10 %	
	Ari	ith	11.85 s	83 %	
1019 10gic to_rear2 . speed_t -> rear	An	rays	0.06 s	0 %	
1021 logic of_real2 : real -> speed_t	Su	m	0.02 s	0 %	
1022 prodicate and (vispeed t vispeed t) =	Re	cords	0.03 s	0 %	
1024 forall v:speed_t x:speed_t [eq4(x v)]		.00	0.00-	0.04	\prec
	AC	.(^)	0.00 s	0%	
goai wr_parameter_der					

Main Changes	Evaluation	What is next?
00000000000	00	0

AltGr-Ergo : example

▼ AltGr-Ergo				- + >
File Debug Options Help				
🙀 🔮 🞻 Valid (0.25 s) 🦽		٩		
1003 1004 axiom def_axiom1 : 1005 a_brake_mergency_model = of_int1() 1006 a_brake_mergency_model = of_a 12 2 monitoring inputs 70 11	<u>User</u>	• <u>i</u>	nstan	tiated axioms:
1007 and a_brake_emergency_model1 = sec_3_13_2_monitoring_inputs_70	#		limit	Lemma
1008	0 2	0	••	def_axiom
1009 type speed_t	0 8		00	inversion_axiom1
1010 1011 logic attr. ATTRIBUTE MODULUSA : real	7		00	in_range2
1012	0 6		00	inversion_axiom2
1013 predicate in_range4 (x:real) =				
1014 forall x:real [in_range4(x)].	- SAI		0.01 s	5 %
1015 In_range4(x) 1016 $<=>$ = from int(340282346638528850811704183484516925440) <= x	Matc	hing	g 0.01 s	8 %
1017 and x <= from_int(340282346638528859811704183484516925440)	CC(X)		0.12 s	78 %
1018	Arith		0.01 s	5%
1019 logic to_real2 : speed_t -> real	Array	s	0.00 s	0.%
1021 logic of real2 : real -> speed t	Cum		0.00 c	0.06
1022	Sum		0.00 \$	0 %
1023 and colle and account to transmit to a	Recor	rds	0.00 s	3 %
1024	AC(X)		0.00 s	0 %
goal WP narameter def				

Main Changes ○○○○○○○○●○	Evaluation	What is next?
A new library		
Alt-Ergo Ze	an OCaml SMT librar	у
Enhanced and light version	of Alt-Ergo :	
a new SAT solver base	ed on a re-implementation of mi	nisat

- incremental
- support several instances
- no quantifiers
- used in model-checking and k-induction

Additional explored topics

- a lightweight proofs certification mechanism using COQ
- built-in support of floating point numbers
 - integration of Gappa in Alt-Ergo [SMT-Workshop 2012]

Main Changes	Evaluation	What is next?
000000000	•0	0

Why3 benchmark

1920 formulas timeout : 30 seconds

	trunk	0.95.1	0.94	0.93	0.92.2	0.91
valid	1841	1841	1811	1773	1737	1685
time	353	362	465	411	527	555
unknown	21	20	25	24	22	21
time	47	13	31	25	33	45
timeout	58	59	83	99	128	175
errors	0	0	1	24	33	39

Main Changes	Evaluation	What is next?
000000000	0	0

Hi-lite public benchmark

3583 formulas timeout : 30 seconds

	trunk	0.95.1	0.94	0.93	0.92.2	0.91
valid	2418	2397	2352	1526	2286	2374
time	847	723	988	158	869	1110
unknown	649	487	138	76	378	387
time	2931	1438	975	196	1217	1353
timeout	518	691	995	283	910	815
errors	0	10	100	1700	11	7

Main Changes	Evaluation	What is next ? ●
M/hat is next?		
vvnat is next ?		

- Floating point numbers, COQ certification, lemmas instantiation, models generation, non-linear arithmetic,
- ANR bware project
 - improving Alt-Ergo for POs coming from Atelier-B
- commercial support for Alt-Ergo by OCamlPro