Softwars Aty

CEA Contribution & Future Work

Julien Signoles
CEA LIST
Software Safety Labs

Hi-Lite Final Meeting
May 2013, the 29t

) it HI-
Simplifying the use of formal methods

(long m1
{for (i=C

[¢ amu .
Qutline

Softwars Aty

1. what's the status before Hi-Lite (Apr. 2010)

2. what's done during Hi-Lite

» E-ACSL language
» E-ACSL plug-in

» improving Frama-C

3. what's planned to do next

(long m1
(for (1=(

eoono© Situation in April 2010

Frama-C Boron

v

v

only designed for static analyzers

v

mostly no way to combine them to verify program properties

v

ACSL specification language

v

PathCrawler test generation tool

(long m1
{for (i=C

Situation in May 2013

Frama-C Fluorine: Boron + 4

v

v

now designed both for static and dynamic analyzers

v

combining analyses is effective

v

ACSL + E-ACSL specification languages

v

PathCrawler as a Frama-C Plug-in

What was done during these 3 years in Hi-Lite?

(long m1
{for (i=C

'rumu ¥
Initial Needs

Testing tools:

> require a precondition specifying valid inputs

> require an oracle to decide whether a test is correct
Abstract interpreters:

> require a precondition and assertions to be precise
Program proving tools:

> require a formal specification

» based on pre/post-conditions

Combining them requires a common specification language 5

(long m1
(for (1=(

[r ama
Proposal

» E-ACSL: Executable ANSI/ISO C Specification Language

» builds a bridge between static and dynamic analysis tools

» based on pre-existing ACSL language used by Frama-C

» E-ACSL plug-in converts E-ACSL specifications into C code
» Frama-C plug-in
> runtime assertion checking
» helpful for debuging specification
» may easily be used by any analysis tool for C s

(longm
(for i=C

oo © E-ACSL: Executable-ACSL

Benefits:

» being executable allows to be understandable by dynamic
tools (testing tools, monitors)

> being based on ACSL allows to be supported by existing
Frama-C analyzers

> being translatable into C allows to be supported by other
analysis tools for C
Differences with ACSL:
> few restrictions

» one extension: iterators over recursive datastructures

. » compatible semantics changes

(for (1=(

(long m1
{for (i=C

quantifications must be guarded

\forall 7 X1,...,Xn;
a1 <= x1 <= by && ... && ap <= xp <= by
==>p

\exists 7 X1,...,Xn;
a; <= x1 <= by && ... && ap <= xp <= by
&& p

sets must be finite
loop invariants are simply equivalent to 2 assertions
no way to express termination properties

backwards C labels only

E-ACSL Restrictions

E-ACSL lterators

[terators over C recursive datastructures

// type of binary trees
struct btree {

int val;

struct btree *xleft, *right;
};

// declare an iterator over a binary tree

/*@ iterator access(_, struct btree *t):
Q nexts t->left, t->right;
@ guards \valid(t->left), \valid(t->right); =*/ '

// is_even(t) is valid iff all values in the binary tree t are even ol
/*@ predicate is_even(struct btree *t) = of
@ \forall struct btree *tt; k]

e access (tt, t) ==> tt->val % 2 == 0; */

Goomo © E-ACSL Integers

» mathematical integers to preserve ACSL semantics

» many advantages compared to bounded integers

» automatic theorem provers work much better with such
integers than with bounded integers arithmetics

» specify without implementation details in mind
» still possible to use bounded integers when required ,

» much easier to specify overflows A

(longm
(for i=C

eoono© E-ACSL Undefinedness

» ACSL logic is total and 1/0 is logically significant

» help the user to write simple specification like u/v == 2
» 1/0 is defined but not executable

» E-ACSL logic is 3-valued

» the semantics of 1/0 is “undefined”
» lazy operators &&, ||, _7_:_, ==>

» correspond to Chalin’s Runtime Assertion Checking semantics

» consistent with ACSL: valid (resp. invalid) E-ACSL predicatesz .
remain valid (resp. invalid) in ACSL LIS

(long m1
(for (1=(

eoono© E-ACSL plug-in at a Glance

» convert E-ACSL annotations into C code

» implemented as a Frama-C plug-in

int div(int x, int y) { int div(int x, int y) {

/%@ assert y-1 != 0; */ E-ACSL /*@ assert y-1 != 0; */
return x / (y-1); - e_acsl_assert(y-1 != 0);
} return x / (y-1);
}

(long m1
(for (i=(

Softwars Aty

E-ACSL plug-in at a Glance

» convert E-ACSL annotations into C code

> implemented as a Frama-C plug-in

int div(int x, int y) { int div(int x, int y) {
/%@ assert y-1 != 0; */ E-ACSL /*@ assert y-1 != 0; */
return x / (y-1); — e_acsl_assert(y-1 != 0);
}

return x / (y-1);
}

the general translation is more complex than it may look ’

» \result requires to introduce extra-variables

» \at(x,L) requires to introduce code at L

o}
> ’
(longm e
(for i=C

(longm
(for i=C

» use GMP library for mathematical integers

/%@ assert y-1 == 0; */
mpz.t e_acsl_1, e_acsl_2, e_acsl_3, e_acsl_4;
int e_acsl_5;

mpz init set si(e_acsl_1, y); // e_acsl_1 =y
mpz_init set si(e_acsl_2, 1); // e_acsl_2 =1
mpz_init(e_acsl_3);

mpz_sub(e_acsl_3, e_acsl_1, e_acsl_2); // e_acsl_3 = y-1
mpz_init set si(e_acsl_4, 0); // e_acsl_4 =0
e_acsl_5 = mpzcmp(e_acsl_3, e_acsl_4); // (y-1) == 0

e acsl assert(e_acsl_5 == 0); // runtime check

mpz_clear(e_acsl_1); mpzclear(e_acsl_2); // deallocate
mpz clear (e_acsl_3); mpz clear(e_acsl_4);

E-ACSL Plug-in Integer Support

(long m1
(for (1=(

» use GMP library for mathematical integers

/%@ assert y-1 == 0; */

mpz.t e_acsl_1, e_acsl_2, e_acsl_3, e_acsl_4;

int e_acsl_5;

mpz init set si(e_acsl_1, y); // e_acsl_1 =y
mpz_init set si(e_acsl_2, 1); // e_acsl_2 =1
mpz_init(e_acsl_3);

mpz_sub(e_acsl_3, e_acsl_1, e_acsl_2); // e_acsl_3 = y-1
mpz_init set si(e_acsl_4, 0); // e_acsl_4 = 0
e_acsl_5 = mpzcmp(e_acsl_3, e_acsl_4); // (y-1) == 0

e acsl assert(e_acsl_5 == 0); // runtime check

mpz_clear(e_acsl_1); mpzclear(e_acsl_2); // deallocate

mpz clear (e_acsl_3); mpz clear(e_acsl_4);

> design a type system to detect when GMP is really required

> infer a correct interval for any term, as small as possible

» almost no GMP in practice :-)

E-ACSL Plug-in Integer Support

o010 © E-ACSL Plug-in RTE Detection

must prevent introducing RTE when translating annotations

int foo(int u, int v) {
/*@ assert u/v == 2; *x/
return u/v;

}

(longm
(for (i=¢

eoono© E-ACSL Plug-in RTE Detection

must prevent introducing RTE when translating annotations

int foo(int u, int v) { int foo(int u, int v) {
/*@ assert u/v == 2; */ E-ACSL /*@ assert u/v == 2; */
return u/v; — e_acsl_assert(u/v == 2);
} return u/v;
}

(long m1
(for (i=C

eoono© E-ACSL Plug-in RTE Detection

must prevent introducing RTE when translating annotations

int foo(int u, int v) { int foo(int u, int v) {
/*@ assert u/v == 2; */ E-ACSL /*@ assert u/v == 2; */
return u/v; — e_acsl_assert(u/v == 2);
} return u/v;
}
RTE plug-in

int foo(int u, int v) {

/*Q@ assert v != 0; x/ ’
/%@ assert u/v == 2; */ :
e_acsl_assert(u/v == 2); D

return u/v;

(long m1
(for (i=C

E-ACSL Plug-in RTE Detection

must prevent introducing RTE when translating annotations
int foo(int u, int v) { int foo(int u, int v) {
/*@ assert u/v == 2; */ E-ACSL /*@ assert u/v == 2; */
return u/v; — e_acsl_assert(u/v == 2);
i return u/v;
}
RTE plug-in
int foo(int u, int v) { int foo(int u, int v) {
/*Q@ assert v !'= 0; */ /%@ assert v != 0; */ b
e_acsl_assert(v != 0); /*Q assert u/v == 2; *x/)
/*@ assert u/v == 2; *x/ . e_acsl_assert(u/v == 2); ’ P
e_acsl_assert(u/v == 2); E-ACSL return u/v; o}
return u/v; } 9

(long m1
(for (i=C }

6oom0 E-ACSL Plug-in Memory Observation

» memory-related constructs like \valid require to know the
memory structure at runtime

» C library for memory observation
» used by E-ACSL Plug-in
> once again the translation is quite heavy

» backward dataflow analysis to instrument the code only when -
required TP

(longm
(for i=C

eoono© E-ACSL Publications

v

J. Signoles.
E-ACSL User Manual.
May 2013.

» M. Delahaye, N. Kosmatov and J. Signoles.
Common Specification Language for Static and Dynamic
Analysis of C Programs.
SAC'13. March 2013.

» N. Kosmatov, G. Petiot and J. Signoles.
Optimized Memory Monitoring for Runtime Assertion
Checking of C Programs. o
Submitted article. :

» N. Kosmatov and J. Signoles. S,
(long m1) . . .
for=¢ Runtime Assertion Checking with Frama-C.

Goomo © Combining Analysins within Frama-C

> how to ensure the safety of an annotated program

v

by using several customizable analyzers

v

based on different techniques?

v

a “consolidation algorithm” merges all the results coming
from the different analyzers with their different configurations

v

potential results are:
» valid
» unknown
» invalid
» inconsistent .
» a variety of refinement (never tried, dead annotations, ...) -

(long m1
(for (1=(

Goomo © Combining Analyses within Frama-C

Theory

> the consolidation algorihm is correct

if each analyzer is correct, then the algorithm returns “Valid”
(resp. “Invalid”) for a valid (resp. invalid) property. It
returns “Inconsistent” if there are both a proof of validity
and invalidity.

> the consolidation algorithm is complete

if each analyzer is correct and indicates the right hypotheses,
and if one analyzer does not indicate “Dont know" under
recursively valid hypotheses, then the computed status is
either “Valid" or “Invalid”.

(long m1
(for (1=(

[T amu . .
Frama-C Publications

» L. Correnson and J. Signoles.
Combining Analyses for C Program Verification.
FMICS'12. Aug. 2012.

» P. Cuoq, F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles
and B. Yakobowski.
Frama-C, A Software Analysis Perspective.
SEFM'12. Oct. 2012.

Selected for journal publication.

» P. Cuoq, D. Doligez and J. Signoles.
Lightweight Typed Customizable Unmarshaling. .
ML'11. Sep. 2011. s

(longm
(for i=C

T ama
Future Work
E-ACSL development

> support missing constructs:

» assigns and loop assigns
» logic functions and predicates
> loop invariants

» complete and disjoint behaviors

> ...

v

temporal memory safety (balancing of malloc/free, ...)

» memory profiling

v

improve the instrumentation: more optimizations

(long m1
{for (i=C

v

proof of E-ACSL optimized instrumentation

T ama
Future Work
Application of E-ACSL

v

E-ACSL was initially designed for runtime assertion checking

v

debugging specifications

» before proving program
> teaching

> monitoring
» security application
» combining monitoring and static analysis ,

» demo this afternoon

combining test and static analysis s

v

(long m1
(for(i=C

[r ama
Future Work

Context

v

1 opened Phd position
» Formalization of E-ACSL within Coq

v

1 submitted French ANR project

» combining static and dynamic analyses
» fully centered around E-ACSL

v

1 European Artemis project being submitted

> security-oriented

» E-ACSL for monitoring on a simulator

v

Sec4Safe YT

» when, where, what, who? :-) ’

(longm
(for i=C

Other projects?

[r ama
Future Work
Also...

» Tool collaborations

» Language Collaborations

» Mixed C/Ada program verification

» Tools/analysis/language Collaborations in a certification
context

» 1 opened Phd position (combining test and proof)

SRI's Evidential Tool Bus i

(long m1
{for (i=C

[¢ amu N
Conclusion

v

E-ACSL: new executable specification language for C

v

implemented as a Frama-C plug-in

v

combining analysis is now effective within Frama-C

v

3 articles + 1 submitted, 1 short paper, 1 submitted tutorial

v

several potential applications

v

a lot of works remain (both theoretical and practical)

(longm
(for i=C

