
SPARK 2014 and
GNATprove
Roadmap and Challenges

Roadmap
● May 29 2013: GPL 2013 release (called

SPARK-HiLite)
● June 2013: hi-lite project on Open-DO

moved to spark2014 project (also public)
● June 2013: finalization of SPARK 2014 RM

○ most of SPARK 2005 supported (not yet supported:
RavenSPARK + Object Oriented programs)

○ generation of Global is not described in RM
● November 2013: beta release
● Q1 2014: release 1 of SPARK 2014

○ flow analysis, non-aliasing analysis, proof

Assumptions (1/3)
● Why?

○ Allow mixing different verification methods
○ Allow mixing of SPARK and non-SPARK code
○ Allow mixing of Ada and C Code

● How?
○ Two phases
○ Modular generation of explicit assumptions
○ Aggregation of assumptions and verification results

● Existing approaches
○ Evidential Tool Bus (SRI)
○ Frama-C collaboration of plug-ins

Assumptions (2/3)

Tool output:
 file.adb:12:7: precondition of G proved
 file.adb:15:6: postcondition of F proved
 file.adb:12:7: postcondition of G assumed

procedure F
 (V : in out Integer) is
begin
 if V > 0 then
 ...
 G (V, Z);
 ...
 end if;
end F;

Assumptions (3/3)

 Christakis, Müller, Wüstenholz: Collaborative Verification and Testing with Explicit Assumptions,
 FM 2012

Object Oriented Code
● Support for behavioral subtyping only
● Check Liskov Substitutability Principle (LSP)

○ weaker Pre and stronger Post
○ Less Global Input and Global In_Out
○ same Global Ouput

● Subprogram checked against Pre/Post
● Which contract for dispatching?

○ Pre / Post ?
○ Pre'Class / Post'Class ?

● Global'Class / Depends'Class ?

RavenSPARK
● RavenSCAR is a subset of Ada for safe

usage of tasking features (schedulability)
○ only top-level tasks
○ fixed priorities

● RavenSPARK is a subset of RavenSCAR
compatible with SPARK
○ tasks communicate only through protected objects

● Proof of protected objects & tasks (seems
"simple")

● Proof of manipulation of protected objects
(similar as "volatile")

Data Invariants (1/2)
● Subtype predicates

○ "strong" invariant
○ Add a predicate to a type that should always be true
○ Will support only limited form in SPARK:

■ Cannot mention global variables
○ Support in GNATprove seems straightforward

■ insert assumptions/assertions where needed

Data Invariants (2/2)
● Type invariants

○ "weak" invariant
○ Add a predicate to a type that can be temporarily

broken by "primitive operations" (functions) of that
type

○ In SPARK, invariant should not depend on global
variables

○ Sufficient to enrich precondition/postcondition?
○ Do we need more restrictions?

Non-Linear Arithmetic (1/2)
Two lines of work:
1. Axiomatisation + Heuristics

○ produce Why encoding/axiomatisation for non-linear
operations

○ improve Alt-Ergo's provability and performance
based on practical problems

2. Keep good interface with multiple provers
○ non-linear arithmetic is an active research area
○ decision procedures for SMT solvers using bit-

vectors, computer algebra
○ implemented in Z3, CVC4, Boolector, Alt-Ergo?

● Axioms + Heuristics
○ Advantages: tailored for industrial problems, short-

term bang for buck
○ Disadvantages: possibly fragile, prover specific

● Decision procedures
○ Advantages: more predictable, based on

fundamental knowledge, long-term solution
○ Disadvantages: possibly too time consuming, may

not work on industrial problems
● Compare Simplifier vs Victor

A bit of both?

Non-Linear Arithmetic (2/2)

Counterexamples (1/3)

Pos = 1..9, A = (0, 0, 0, 0, 0, 0, 0, 0, 0, 1)

Val = 1, A = (0, 0, 0, 0, 0, 0, 0, 0, 0, 1)

Pos = 1..9

Counterexamples (2/3)
1. generate VCs with labels

goal Incorrect: (forall x: int. ("model:0":x) <> 0)

2. call alt-ergo with switch -model
alt-ergo -model file.why

3. extract equalities with literals from model
x = X1(arith):[0 [int]]

4. display extracted values in GPS

Concrete model instead of propositional one?
Partial model when timeout reached?

Counterexamples (3/3)
(set-logic AUFLIA)
(declare-fun x () Int)
(assert (= x 0))
(check-sat)
(get-value (x))
(exit)

∀ x, y : int. x <> 0 x = 0 x < 0 x < y

Z3 x = 0 x = 1 x = 0 x = 0, y = 0

CVC4 x = 0 x = 1 x = 0 x = 0, y = 0

Alt-Ergo x = 0 x ∈]-∞;-1] ∪ [1;
+∞[

x ∈ [0;+∞[x > (y - 1)

Riposte x = 0 x = -1 x = 0 x = 0, y = 0

Sireum Kiasan x = 0 x = 1 x = 0 x = 0, y = 0

goal Incorrect:
 (forall x: int.
 ("model:0":x) <> 0)

SMT v2

Why

Floating-points (1/2)
● mathematical reals are used to model

floating points in proof
● difference between executable semantics

and proof semantics
● false positives and negatives
● Way out: use floating point semantics and

proof tools with floating point support
(Gappa, Alt-Ergo + Gappa)

 Boldo, Clément, Filliâtre, Meyero, Melquiond, Weis: Wave equation numerical resolution:

 a comprehensive mechanized proof of a C program. Journal of Automated Reasoning, 2013

Floating-points (2/2)
● Floating point semantics also for assertions,

is it a limitation?
● Is NaN allowed?
● Is +/-Inf allowed?
● Can we have a type "float" in Why3

(programs)?

Multi-prover Approach
● Benefits

○ increase provability (portfolio approach)
○ help during debugging (detect prover shortcomings,

generate counterexamples)
● SMT solvers

○ encoding is important, ongoing work
○ use of SMT built-in types as much as possible
○ careful use of triggers

● First-order provers
○ Why to Spass, E-prover, Vampire
○ possibly more: Paradox, Equinox..
○ need more investigation on practical problems

Axiomatized Units
● User can define Why3 theories for Ada units

○ To improve efficiency (containers)
○ To improve expressivity (sum_of, permutation...)

● Works for generic packages
○ Uses Why3 clone

● User can start from auto-generated stubs
○ Generate expected signature for Ada elements
○ Generate complete translation of Ada types
○ One namespace per Ada declaration

● Theories provided for SPARK Libraries

Bridge to Manual Provers
interest in

● Coq (KSU, CNAM, MERCE)
● Isabelle (Secunet)

