SPARK 2014 and
GNATprove

Roadmap and Challenges

Roadmap

e May 29 2013: GPL 2013 release (called
SPARK-HiLite)

e June 2013: hi-lite project on Open-DO
moved to spark2014 project (also public)

e June 2013: finalization of SPARK 2014 RM
o most of SPARK 2005 supported (not yet supported:
RavenSPARK + Object Oriented programs)
o generation of Global is not described in RM

e November 2013: beta release
e Q1 2014: release 1 of SPARK 2014

o flow analysis, non-aliasing analysis, proof

Assumptions (1/3)

e \Why?
o Allow mixing different verification methods
o Allow mixing of SPARK and non-SPARK code
o Allow mixing of Ada and C Code
e How?
o Two phases
o Modular generation of explicit assumptions
o Aggregation of assumptions and verification results
e EXxisting approaches
o Evidential Tool Bus (SRI)
o Frama-C collaboration of plug-ins

Assumptions (2/3)

Tool output:

file.adb:12:7:
file.adb:15:6:
file.adb:12:7:

procedure F

(V : in out Integer) 1is
begin

if Vv > 0 then

G (V, 2);

end if;
end F;

precondition of G proved
postcondition of F proved
postcondition of G assumed

Assumptions (3/3)

?rocedure F (V : Integer) Assume procedure G
- precondition, (X, Y : in out Integer)
begin et .
if V> 0 then initialization, non- 1S _
Prove aliasing begin
G (VI Z);
ostcondition
L Assume P end Set G;
end 1f; —
end Set G; Test

E’ Christakis, Muller, Wustenholz: Collaborative Verification and Testing with Explicit Assumptions,
FM 2012

Object Oriented Code

e Support for behavioral subtyping only

e Check Liskov Substitutability Principle (LSP)
O weaker Pre and stronger Post
O Less Global Input and Global In_Out
O same Global Ouput

e Subprogram checked against Pre/Post

e \Which contract for dispatching?
o Pre/Post?
o Pre'Class / Post'Class ?

e Global'Class / Depends'Class ?

RavenSPARK

e RavenSCAR is a subset of Ada for safe

usage of tasking features (schedulability)
o only top-level tasks
o fixed priorities

e RavenSPARK is a subset of RavenSCAR
compatible with SPARK

o tasks communicate only through protected objects
e Proof of protected objects & tasks (seems
"simple")
e Proof of manipulation of protected objects
(similar as "volatile")

Data Invariants (1/2)

e Subtype predicates
o "strong" invariant
o Add a predicate to a type that should always be true
o Will support only limited form in SPARK:
m Cannot mention global variables
o Support in GNATprove seems straightforward
m insert assumptions/assertions where needed

Data Invariants (2/2)

e Type invariants

O
O

"weak" invariant

Add a predicate to a type that can be temporarily
broken by "primitive operations"” (functions) of that
type

In SPARK, invariant should not depend on global
variables

Sufficient to enrich precondition/postcondition?
Do we need more restrictions?

Non-Linear Arithmetic (1/2)

Two lines of work:

1. Axiomatisation + Heuristics
o produce Why encoding/axiomatisation for non-linear
operations
o improve Alt-Ergo's provability and performance
based on practical problems

2. Keep good interface with multiple provers
o non-linear arithmetic is an active research area
o decision procedures for SMT solvers using bit-

vectors, computer algebra
o implemented in Z3, CVC4, Boolector, Alt-Ergo?

Non-Linear Arithmetic (2/2)

e Axioms + Heuristics
o Advantages: tailored for industrial problems, short-
term bang for buck
o Disadvantages: possibly fragile, prover specific
e Decision procedures
o Advantages: more predictable, based on
fundamental knowledge, long-term solution

o Disadvantages: possibly too time consuming, may
not work on industrial problems

e Compare Simplifier vs Victor

A bit of both?

Counterexamples (1/3)

e OO0 N\ GPS - (Search project) - search.adb
File Edit Navigate VCS Project Build Debug Tools CodePeer Prove Window Help |°
+ G P | > > B
L e @ % w default > A ﬁl @ 'e -9
2 | L
5 IO E s,
v [Search 14 when False =>
b 15 null; 3G
. 16 end case; A
17 end record;
LoJ 18 5
- . e 6 is
193 function Value Found In_Range
=) 7 P
20 : 0,0,0,0,0,0,0,1)
21 Val nt; 9 begin
22 Low, Up : x) return Boolean — - .
: - - . 10 while Pos < A'Last loop
%3 is (for some J in Low .. Up => A(J) Val); 116 if A(Pos) = Val then
! : - 12 Res := [(Fonnd => True
25 function Linear Search
7 A 13 —_ —
25 (A 14 returzval = 1’ A - (01 01 01 05 01 01 01 05 01 1)
27 Val : E t) return Search Result . "
28 with 15 end if;
2 Pre =>val >= 0, Eif;\:\ ragma Loop_Invariant
30 Post => (if Linear_Search'Result.Found then 18 P gm . ETR
31 A (Linear_Search'Result.At_Index) 19 (oin;n ange
32 Contract_Cases => —
33 (A(1l) = Val => 20 not VEPOS = 1__9nge (A, Val, 2
. 34 Linear Search'Result.At Index = 1, 21 : s
:35(9 A = Val and then Value In ez ECENESNCCEI
136 | - —<Caarch’'Result.Found, 53 end loop;
37 |$ show path '”‘°’ma"°”|zn Arr'Range => A(J) /= Val) = = Res i [Pound =5 False}:
38 Not Lincar Search'Result.Found); es := (Foul alse);
39 - 26 return Res; -
40 |end Search: 27 end Linear Search;
')| - =
< [o] | (G | o
[Linear_Search Insert | Writable | Unmodilied 35:67 [Linear_Search Insert| Writable | Unmodilied 11:1
....... —
34 gnatprove (1 item)
v |] search.ads (1 item)
(R 35:67 contract case not proved
b4 I [J] Regexp [] Hide matches |

Counterexamples (2/3)

1. generate VCs with labels

goal Incorrect: (forall x: int. ("model:0":x) <> 0)

call alt-ergo with switch -model
alt-ergo -model file.why

extract equalities with literals from model

x = X1 (arith) :[0 [int]]

display extracted values in GPS

> W N

Concrete model instead of propositional one?
Partial model when timeout reached?

Counterexamples (3/3)

(set-logic AUFLIA)
Why
(declare—-fun x () Int)

SMT v2 (assert (= x 0)) goal Incorrect:
(check-sat) (forall x: int.
(get-value (x)) ("model:0":x) <> 0)
(exit)

V¥ x,y:int. x<>0 x=0 x<0 X<y
Z3 x=0 x=1 x=0 x=0,y=0
CvC4 x=0 x=1 x=0 x=0,y=0
Alt-Ergo x=0 X € J-~;-1] U [1; X € [0;+e°[x>(y-1)

+oo[

Riposte x=0 x=-1 x=0 x=0,y=0

Sireum Kiasan x=0 X =1 x=0 x=0,y=0

Floating-points (1/2)

e mathematical reals are used to model
floating points in proof

e difference between executable semantics
and proof semantics

e false positives and negatives

e \Way out: use floating point semantics and
proof tools with floating point support
(Gappa, Alt-Ergo + Gappa)

I Boldo, Clément, Filliatre, Meyero, Melquiond, Weis: Wave equation numerical resolution:

a comprehensive mechanized proof of a C program. Journal of Automated Reasoning, 2013

Floating-points (2/2)

e Floating point semantics also for assertions,
IS it a limitation”?

e |s NaN allowed?

e [s +/-Inf allowed?

e Can we have a type "float" in Why3
(programs)?

Multi-prover Approach

e Benefits
o increase provability (portfolio approach)
o help during debugging (detect prover shortcomings,
generate counterexamples)

e SMT solvers
o encoding is important, ongoing work
o use of SMT built-in types as much as possible
o careful use of triggers

e First-order provers
o Why to Spass, E-prover, Vampire
o possibly more: Paradox, Equinox..
o need more investigation on practical problems

Axiomatized Units

e User can define Why3 theories for Ada units
o To improve efficiency (containers)
o To improve expressivity (sum_of, permutation...)

e \Works for generic packages
o Uses Why3 clone

e User can start from auto-generated stubs
o (Generate expected signature for Ada elements
o Generate complete translation of Ada types
o One namespace per Ada declaration

e Theories provided for SPARK Libraries

Bridge to Manual Provers

800

File View Tools Help

% Why3 Interactive Proof Session

interest in

Context
@® Unproved goals
O All goals

Provers

Alt-Ergo (0.94)
Alt-Ergo (0.96)

Coq (8.3pl4)

Transformations

t‘& split

&3 Inline

Tools

(P Edit
6y Replay

Cleaning

© Remove
@) clean

Proof monitoring

Waiting: 0
Scheduled: 0
Running: 1\

a Interrupt

Cogq (KSU, CNAM, MERCE)

Theories/Goals ‘Status ‘Tuﬂ 955 axiom H3 to_int3 posl < 10 =l
5 956
S 0 | g7 axomna: e [sabelle (Secunet)
(A 1. precondition @ 958 to_int5
959 (get (elts1 a) ((to_int3 posl + offsetl a) - attr__AT
v @ Search_linear_search_pre @ 960 to int5 val
7 961
M d, Ve for pre_check @ 962 constant res :bool
> @ split_goal @ 963
@ 1. assertion @ ggg constant res1 : index O 0 0 . - ‘ X Cothlde . : ,
(A 2. assertion @ :gg axiom H5 ires = of ints 1 Ares] File Edit Navigation Iry Tactics Templates Queries Display Compile Windows Help
v @ search_linear_search_def @ 968 constant search__linear_search] % 1T 4 =20 il @ R Y
v (1 vCfordef @ 969 - 1 gl 4 L
— It | PS 970 constant search__linear_search}
N cplit o2 o @search__package_Search_linear_search__def_WP_parameter_clef 2.v‘
(A 1. precondition @ S i — - — - — - - - =
search__linear_search__result - 2
< (1 2.precondition) 974 search_linear_search__result| [((rec__at_indexl al) = (rec__at_indexl b)))))= =
975 -
{x Coq (8.3pl4) Q@ 976 axiom H7 :ustemp_standard__§ b) = false)).
;R 3 977 . .
3,/assertlon @ 978 goal WP_parameter_def : to_i| Why3 assumption *) "J
(1 4. assertion @ {978 end Definition in_range6 (rec_ found3:bool) (al:sec |
@ 5. assertion @ e (rec__found3 = (rec_ found al)). r'/
144 let def "GP_Subp: -
IR postcocilon L4 145 requires { ((Search | [Parameter dummy7: tib.
(A 7. precondition @ 146 ensures { ('G 51)
147 ("GP_Pretty_Ada - .
(1 8. precondition @ 148 ('GP Adria goal *)
@ . precondtion @ 149 = orem WP_parameter_def (0%Z <= (to_int3 val Welcome to CoqIDE, an Integrated Developmen
150 (let _temp_standard__search_3 3 (pos = (of_intl 1%Z)) -= (((to_intl pos) =< 1€ 't Environment for Coq .
(3 10. assertion @ Eé ensures {{result = Tintegerbol | ((to_intl posl) < 10%Z)%Z -> (((to_int3 (get ou are running The Coq Proof Assistant, ver | |
(A 11.assertion @ 5) in ¢ {({{to_intl posl) + (offsetl a))%z - 1%z)%z)) | [sion 8.3pl4 (June 2012)
(1 12. assertion @ 154 (let _temp_standard_search 54 | forall (res:bool) (resl:index), ((res = (of_i| : =l
@ 1. posteondt 155 ensures {(result = (if ((foralls¢ | forall (search_ linear_search__ result:bool) | +®© ...
! RPORLEONCRICN © 156 (((1<=search_linear_search, | (search_linear_search _ resultl:index),
(2 14. precondition @ g;]TE':I'“))*)")‘}"(((search__linear_search__ result = res) /\
(A 15. precondition @ 159) (search__linear_search resultl = resl)) -=
i il > 160)in ((((bool_eq (to_int3 (get (eltsl a) ((1%Z + (c
| G L) @ 161 (let _temp_standard__search 4 5 (to int3 val)) = true) -=
(1 17. assertion @ 162 ensures {(result = @GNdbAEeY | ((t5 int4 search linear search result) = 1
> [18 assertion @ | ‘1|63 ‘ 1 intros hl pos h2 h3 posl h4 hS res resl (h6,h7)
4 G e e e search__linear_search__ result search_ linear_s
Qed.
4 0|
Ready Line: 1char: 1 Coglde started

