SPARK 2014 and
GNATprove

Roadmap and Challenges




Roadmap

e May 29 2013: GPL 2013 release (called
SPARK-HiLite)

e June 2013: hi-lite project on Open-DO
moved to spark2014 project (also public)

e June 2013: finalization of SPARK 2014 RM
o most of SPARK 2005 supported (not yet supported:
RavenSPARK + Object Oriented programs)
o generation of Global is not described in RM

e November 2013: beta release
e Q1 2014: release 1 of SPARK 2014

o flow analysis, non-aliasing analysis, proof



Assumptions (1/3)

e \Why?
o Allow mixing different verification methods
o Allow mixing of SPARK and non-SPARK code
o Allow mixing of Ada and C Code
e How?
o Two phases
o Modular generation of explicit assumptions
o Aggregation of assumptions and verification results
e EXxisting approaches
o Evidential Tool Bus (SRI)
o Frama-C collaboration of plug-ins



Assumptions (2/3)

Tool output:

file.adb:12:7:
file.adb:15:6:
file.adb:12:7:

procedure F

(V : in out Integer) 1is
begin

if Vv > 0 then

G (V, 2);

end if;
end F;

precondition of G proved
postcondition of F proved
postcondition of G assumed



Assumptions (3/3)

?rocedure F (V : Integer) Assume procedure G
- precondition, (X, Y : in out Integer)
begin et .
if V> 0 then initialization, non- 1S _
Prove aliasing begin
G (VI Z);
ostcondition
L Assume P end Set G;
end 1f; —
end Set G; Test

E’ Christakis, Muller, Wustenholz: Collaborative Verification and Testing with Explicit Assumptions,
FM 2012




Object Oriented Code

e Support for behavioral subtyping only

e Check Liskov Substitutability Principle (LSP)
O weaker Pre and stronger Post
O Less Global Input and Global In_Out
O same Global Ouput

e Subprogram checked against Pre/Post

e \Which contract for dispatching?
o Pre/Post?
o Pre'Class / Post'Class ?

e Global'Class / Depends'Class ?



RavenSPARK

e RavenSCAR is a subset of Ada for safe

usage of tasking features (schedulability)
o only top-level tasks
o fixed priorities

e RavenSPARK is a subset of RavenSCAR
compatible with SPARK

o tasks communicate only through protected objects
e Proof of protected objects & tasks (seems
"simple")
e Proof of manipulation of protected objects
(similar as "volatile")



Data Invariants (1/2)

e Subtype predicates
o "strong" invariant
o Add a predicate to a type that should always be true
o  Will support only limited form in SPARK:
m Cannot mention global variables
o Support in GNATprove seems straightforward
m insert assumptions/assertions where needed



Data Invariants (2/2)

e Type invariants

O
O

"weak" invariant

Add a predicate to a type that can be temporarily
broken by "primitive operations"” (functions) of that
type

In SPARK, invariant should not depend on global
variables

Sufficient to enrich precondition/postcondition?
Do we need more restrictions?



Non-Linear Arithmetic (1/2)

Two lines of work:

1. Axiomatisation + Heuristics
o produce Why encoding/axiomatisation for non-linear
operations
o improve Alt-Ergo's provability and performance
based on practical problems

2. Keep good interface with multiple provers
o non-linear arithmetic is an active research area
o decision procedures for SMT solvers using bit-

vectors, computer algebra
o implemented in Z3, CVC4, Boolector, Alt-Ergo?



Non-Linear Arithmetic (2/2)

e Axioms + Heuristics
o Advantages: tailored for industrial problems, short-
term bang for buck
o Disadvantages: possibly fragile, prover specific
e Decision procedures
o Advantages: more predictable, based on
fundamental knowledge, long-term solution

o Disadvantages: possibly too time consuming, may
not work on industrial problems

e Compare Simplifier vs Victor

A bit of both?



Counterexamples (1/3)
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Counterexamples (2/3)

1. generate VCs with labels

goal Incorrect: (forall x: int. ("model:0":x) <> 0)

call alt-ergo with switch -model
alt-ergo -model file.why

extract equalities with literals from model

x = X1 (arith) :[0 [int]]

display extracted values in GPS

> W N

Concrete model instead of propositional one?
Partial model when timeout reached?



Counterexamples (3/3)

(set-logic AUFLIA)
Why
(declare—-fun x () Int)

SMT v2 (assert (= x 0)) goal Incorrect:
(check-sat) (forall x: int.
(get-value (x)) ("model:0":x) <> 0)
(exit)

V¥ x,y:int. x<>0 x=0 x<0 X<y
Z3 x=0 x=1 x=0 x=0,y=0
CvC4 x=0 x=1 x=0 x=0,y=0
Alt-Ergo x=0 X € J-~;-1] U [1; X € [0;+e°[ x>(y-1)

+oo[

Riposte x=0 x=-1 x=0 x=0,y=0

Sireum Kiasan x=0 X =1 x=0 x=0,y=0




Floating-points (1/2)

e mathematical reals are used to model
floating points in proof

e difference between executable semantics
and proof semantics

e false positives and negatives

e \Way out: use floating point semantics and
proof tools with floating point support
(Gappa, Alt-Ergo + Gappa)

I Boldo, Clément, Filliatre, Meyero, Melquiond, Weis: Wave equation numerical resolution:

a comprehensive mechanized proof of a C program. Journal of Automated Reasoning, 2013




Floating-points (2/2)

e Floating point semantics also for assertions,
IS it a limitation”?

e |s NaN allowed?

e [s +/-Inf allowed?

e Can we have a type "float" in Why3
(programs)?



Multi-prover Approach

e Benefits
o increase provability (portfolio approach)
o help during debugging (detect prover shortcomings,
generate counterexamples)

e SMT solvers
o encoding is important, ongoing work
o use of SMT built-in types as much as possible
o careful use of triggers

e First-order provers
o Why to Spass, E-prover, Vampire
o possibly more: Paradox, Equinox..
o need more investigation on practical problems



Axiomatized Units

e User can define Why3 theories for Ada units
o To improve efficiency (containers)
o To improve expressivity (sum_of, permutation...)

e \Works for generic packages
o Uses Why3 clone

e User can start from auto-generated stubs
o (Generate expected signature for Ada elements
o Generate complete translation of Ada types
o One namespace per Ada declaration

e Theories provided for SPARK Libraries



Bridge to Manual Provers
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