
Maximal and Compositional Pattern-Based
Loop Invariants

Virginia Aponte1, Pierre Courtieu1, Yannick Moy2, and Marc Sango2

1 CNAM, 292 rue Saint-Martin F-75141 Paris Cedex 03 - FRANCE
{maria-virginia.aponte garcia,pierre.courtieu}@cnam.fr

2 AdaCore, 46 rue d’Amsterdam, F-75009 Paris (France)
{moy,sango}@adacore.com

Abstract. We present a novel approach for the automatic generation
of inductive loop invariants over loops manipulating arrays. Unlike most
existing approaches, it generates invariants containing disjunctions and
quantifiers, which are rich enough for proving functional properties over
programs which manipulate arrays. Our approach does not require the
user to provide initial assertions or postconditions. It proceeds by recog-
nizing through static analysis simple code patterns that respect stability
properties on accessed locations, on an intermediate representation of
parallel assignments. We associate with each pattern a formula that we
prove to be a so-called local invariant, and we give conditions for local
invariants to compose an inductive invariant of the complete loop. We
also give conditions over invariants to be locally maximal, and we show
that some of our pattern invariants are indeed maximal.

Keywords: Loop invariants, compositional reasoning, automatic invari-
ant generation.

1 Introduction

Thanks to the increased capabilities of automatic provers, deductive program
verification emerges as a realistic verification technique in industry, with com-
mercially supported toolsets [8, 25], and new certification standards recognizing
its use [22]. In deductive program verification, users first annotate their programs
with logical specifications; then a tool generates Verification Conditions (VCs),
i.e. formulas encoding that the program respects its specifications; finally a tool
is called to prove automatically those VCs. The problem is that, in many cases,
in particular during development, not all VCs are proved automatically. Dealing
with those VCs is a non-trivial task. Three cases are possible: (1) the program
does not implement the specification; (2) the specification is not provable in-
ductively; (3) the automatic prover does not find the proof. The solution to (1)
is to correct the program or the specification. The solution to (3) is to use a
better automatic prover. The solution to (2) is certainly the most challenging
for the user. The problem occurs when, for a given loop, the user should supply
an inductive loop invariant: this invariant should hold when entering the loop; it

2 Virginia Aponte, Pierre Courtieu, Yannick Moy, and Marc Sango

should be provable for the n+1th iteration by assuming only that it holds at the
nth iteration; it should be sufficient to prove subsequent properties of interest
after the loop. In practice, the user has to strengthen the loop invariant until
it can be proved inductively. In general, this requires understanding the details
of the generation of VCs and the underlying mathematical theory, which is not
typical engineering knowledge.

Generation of loop invariants is a well researched area, for which there exists
a rich set of techniques and tools. Most of these techniques focus on the discov-
ery of predicates that express rich arithmetic properties with a simple Boolean
structure (typically, linear or non-linear constraints over program variables). In
our experience with supporting industrial users of the SPARK [1] technology,
these are seldom the problematic loop invariants. Indeed, users are well aware
of the arithmetic properties that they maintain through loops, and thus have no
difficulty manually annotating loops with the desired arithmetic invariants. In-
stead, users very often have difficulties annotating loops with obvious invariants,
that they do not recognize as required for inductive reasoning. These invariants
typically have a complex Boolean structure, with disjunctions and quantifiers,
for expressing both the effects of past iterations and the locations not being
modified by past iterations. In this paper, we focus on the automatic generation
of these richer loop invariants.3

We present a novel technique for generating rich inductive loop invariants,
possibly containing disjunctions and quantifiers (universal and existential) over
loops manipulating scalar and array variables. Our method is compositional,
which differentiates it from previous approaches working on entire loops: we
consider a loop as a composition of smaller pieces (called reduced loops), on
which we can reason separately to generate local invariants, which are aggregated
to generate an invariant of the complete loop. The same technique can be applied
both to unannotated loops and to loops already annotated, in which case it uses
the existing loop invariant.

Local invariants are generated based on an extensible collection of patterns,
corresponding to simple but frequently used loops over scalar and array variables.
As our technique relies on pattern matching to infer invariants, the choice and
the variety of patterns is crucial. We have identified five categories of patterns,
for search, scalar update, scalar integration, array mapping and array exchange,
comprising a total of 16 patterns. For each pattern we define, we provide a
local invariant, and prove it to be modular, and for some of them maximal. A
local invariant is modular when it can strengthen an inductive invariant over the
complete loop. We give conditions for local invariants to be modular. A local
invariant is maximal when it is stronger than any invariant on the reduced loop.
To our knowledge, this is the first work dealing with compositional reasoning
on loop invariants, defining modularity and maximality criteria. We also extend
the notion of stable variables introduced by Kovács and Voronkov[15].

Our technique applied to a loop L iterating over the loop index i can be
summarized as follows:

3 For the sake of simplicity we omit array bound constraints in generated invariants.

Maximal and Compositional Pattern-Based Loop Invariants 3

1. We translate L into an intermediate language of parallel assignments, which
facilitates both defining patterns and reasoning on local invariants.

2. Using a simple syntactic static analysis, we detect stable [15] scalar and array
variables occurring in L. A scalar variable is stable if it is never modified.
An array variable is stable on the range a..b if the value of the array between
indexes a and b is not modified in the first i iterations (where a and b may
refer to the current value of i). We define a preexisting invariant over L,
denoted ℘L, to express these stability properties.

3. We match our patterns against the intermediate representation of L. We
require stability conditions on matched code, which are resolved based on ℘L.
For each match involving pattern Pk, we instantiate the corresponding local
invariant φk with variables and expressions occurring in L.

4. We combine all generated local invariants φ1 . . . φn with ℘L to obtain an
inductive invariant on L given by ℘L ∧ φ1 ∧ . . . ∧ φn.

This article is organized as follows. In the rest of this section we survey re-
lated work and introduce a running example. Section 2 presents the intermediate
language. In section 3, we introduce reduced loops and modular invariants. In
section 4, we define loop patterns as particular instances of reduced loops re-
stricted to stable variables. We present three concrete patterns and we provide
the corresponding modular invariants. In section 5, we present sufficient crite-
ria for a local invariant to be maximal, and we state maximality results on our
three concrete pattern invariants. We finally conclude and discuss perspectives
in section 6.

1.1 Related Work

Most existing techniques generate loop invariants in the form of conjunctions of
(in)equalities between polynomials in the program variables, whether by abstract
interpretation [5, 20], predicate abstraction [9], Craig’s interpolation [18, 19] or
algebraic techniques [4, 23, 14]. Various works have defined disjunctive abstract
domains on top of base abstract domains [16, 12, 24].

A few works have targeted the generation of loop invariants with a richer
Boolean structure and quantifiers, based on techniques for quantifier-free invari-
ants. Halbwachs and Péron [11] describe an abstract domain to reason about
array contents over simple programs that they describe as “one-dimensional ar-
rays, traversed by simple for loops”. They are able to represent facts like (∀i)(2 ≤
i ≤ n ⇒ A[i] ≥ A[i − 1], in which a point-wise relation is established between
elements of array slices, where this relation is supported by a quantifier-free base
abstract domain. Gulwani et al. [10] describes a general lifting procedure that
creates a quantified disjunctive abstract domain from quantifier-free domains.
They are able to represent facts like (∀i)(0 ≤ i < n ⇒ a[i] = 0), in which
the formula is universally quantified over an implication between quantifier-free
formulas of the base domains. McMillan [17] describes an instrumentation of
a resolution-based prover that generates quantified invariants describing facts
over simple loops manipulating arrays. Using a similar technique, Kovács and
Voronkov[15] generate invariants containing quantifier alternation.

4 Virginia Aponte, Pierre Courtieu, Yannick Moy, and Marc Sango

1.2 Running Example

We will use the program of Fig. 1 as a running example throughout the paper.
A simpler version of this program appears in previous works [2, 15].
The program fills an array B with the

b := 1; c := 1; erased := 0;
for i in 1..10 while A[i] 6= 0 loop

if A[i] < 0 then
B[b] := A[i] ; b := b+1;

else
C[c] := A[i] ; c := c+1;

end if
A[i]:=erased;

end loop

Fig. 1. Array partitioning

negative values of a source array A,
an array C with the positive values
of A, and it erases the correspond-
ing elements from A. It stops at the
first null value found in A. As pointed
out in [15], there are many proper-
ties relating the values of A, B and
C before and after the loop, that one
may want to generate automatically
for this program. In this paper, we
show how the different steps of our
technique apply to this loop. In this case, it even generates the most precise loop
invariant.

2 A Language of Parallel Assignments

In this section we introduce the intermediate language L and its formal seman-
tics, as well as notation used throughout this article.

2.1 Syntax

Fig. 2.(a) presents the intermediate language L. In this language, programs are
restricted to a simple for-like loop (possibly having an extra exit condition) over
scalar and one-dimensional array variables. Assignments in L are performed in
parallel.

L ::= loop i in α .. ω exit eb loop

do B end

B ::= skip | G(‖ G)∗ body

G ::= {sl(; sl)
∗} group

sl ::= eb → el := ea assignment

el ::= x | A[ea] location expr

ea, eb ∈ Aexp,Bexp

loop i in 1..10 exit A[i] = 0 do
{ A[i] < 0 → B[b] := A[i]}

‖ { A[i] < 0 → b := b+1 }
‖ { ¬(A[i] < 0) → C[c] := A[i]}
‖ { ¬(A[i] < 0) → c := c+1 }
‖ { true → A[i] := erased }
end

Fig. 2. (a) Formal syntax of loop programs (b) Running example translation (Fig. 1)

Note that location expressions (el) can be either scalar variables or array cells
and that all statements (sl) of a group (G) assign to the same variable: either
the group (only) contains guarded statements gk → x := ek assigning to some

Maximal and Compositional Pattern-Based Loop Invariants 5

scalar variable x; or it contains statements gp → A[ap] := ep assigning to the
possibly different cells A[a1], A[a2] . . . of some array variable A. A loop body (B)
is an unordered collection of groups for different variables.

Running example [Step 1: Translation into the intermediate language] The trans-
lation of the running example loop (Fig. 1) into L is given in Fig. 2.(b).

Expressions and variables n, k stand for (non negative) constants of the
language; lower case letters x, a are scalar variables; upper-case letters A, C
are array variables; v is any variable; ea is an arithmetic expression; ε, eb, g are
Boolean expressions; e is any expression. Subscripted variables x0 and A0 denote
respectively the initial (abstract) value of variables x and A.

Informal semantics Groups are executed simultaneously : expressions and
guards are evaluated before assignments are executed. We assume groups and
bodies to be write-disjoint, and loops to be well-formed. A group G is write-
disjoint if all its assignments update the same variable, and if for any two differ-
ent guards g1, g2 in G, g1∧g2 is unsatisfiable. A loop body B = {G1 ‖ . . . ‖ Gn}
is write-disjoint if all Gk update different variables and if they are all write-
disjoint. A loop L is well-formed if its body is write-disjoint. Thus, on each
iteration, at most one assignment is performed for each variable. Conditions
on guarded assignments are essentially the same as in the work of Kovacs and
Voronkov [15], with a slightly different formalism. Note that, for simplicity, we
require here unsatisfiability of g1∧ g2 for two guards within a group assigning to
array A, even in the case where the updated cells on those guards are actually
different.

Loop conventions L denotes a loop, B a body, and i is always the loop index.
The loop index is not a variable, so it cannot be assigned. For simplicity, we
also assume it is increased (and not decreased) after each run through the loop,
from its initial value α to its final value ω. We abbreviate the construction
loop i in α..ω exit ε do B end by `(α,ω,ε){B}, and by `(α,ω){B} when ε = false.

We use {
−→
Gk} to denote the loop body {G1 ‖ . . . ‖ Gn}. Similarly, {

−−−−−−−−−→
gk → lk := ek}

denotes a group made of the n guarded assignments {g1 → l1 := e1; . . . ; gn →
ln := en}. G(B) denotes the set of groups occurring in B.

Loop variables V (L) is the set of variables occurring in L (note that i /∈ V (L)).
Vw (L) is the set of variables assigned in L, referred to as local (to L). Vnw (L) is
the set of variables occuring in L but not assigned in L, referred to as external
(to L): Vnw (L) = V (L) − Vw (L). Given a set of variables V , the initialisation
predicate ιV is defined as ιV ≡

∧
v∈V v = v0 asserting that all variables v ∈ V

have their initial (abstract) value v0. Sets and formulas defined on loop L are
similarly defined on the loop body B.

Quantifications and substitutions φ, ψ, ι and ℘ denote formulas. If the loop
index i occurs in the formula φ or the expression e, then they are noted φ(i)
or e(i), but this can be omitted when not relevant. Except for logical assertions

6 Virginia Aponte, Pierre Courtieu, Yannick Moy, and Marc Sango

(i.e. invariants, Hoare triples), formulas are implicitly universally quantified on
the set of all their free variables, including i. To improve readability, these quan-
tifications are often kept implicit. We denote by ∃V.φ the formula ∃v1 . . . vn.φ
for all vi ∈ V , and by [V1 ← V2] the substitution of each variable of the set V1
by the corresponding variable of the set V2.

2.2 Strongest Postcondition Semantics

The predicate transformer sp introduced by Dijkstra [6, 7] computes the strongest
postcondition holding after the execution of a given statement. We shall use it to
compute the strongest postcondition holding after the execution of an arbitrary
iteration of the loop body, which will be useful when comparing loop invariants
according to maximality criteria (see section 5). Thus, we express the semantics
of the intermediate language L through a formal definition of sp. In definition 1,
we give a syntactic formulation of sp. As our goal is the generation of loop in-
variants, and not the generation of loop postcondtions, we only need to describe
sp for loop bodies, instead of giving it for entire loops in L.

Definition 1 (Predicate Transformer sp). Let V = Vw(
−→
Gk), V ′ =

⋃
v∈V {v′}.

Let φ be a formula and B a loop body. We define sp(B,φ) as:

sp(skip, φ) = φ and sp({
−→
Gk}, φ) = ∃(V ′).

(
φ

′V ∧
(∧

k Psp(Gk, V)
))

Psp({−−−−−−−−−→gk → x := ek}, V) =
∧
k

(
g
′V
k ⇒ x = e

′V
k

)
∧
(
(
∧
k ¬g

′V
k)⇒ x = x′

)
Psp({

−−−−−−−−−−−−→
gk → A[ak] := ek}, V) =

∧
k g

′V
k ⇒ A[a

′V
k] = e

′V
k ∧ ∀j.

((∧
k ¬(g

′V
k ∧j=a

′V
k)
)

⇒A[j]=A′[j].

)
sp definition requires replacing a variable v assigned in the loop body with a
fresh logical variable v′, standing for the value of v prior to the assignment.
Given a set of variables V , we denote by V ′ the set containing a fresh variable v′

for each variable v ∈ V . Given an expression e, we denote by e
′V ≡ e[V ← V ′].

A similar substitution is defined on predicate φ and denoted φ
′V . The property

sp-mono taken from [21] and corollary 1 will be used in several proofs.

Corollary 1 (Renaming of External Variables in sp). Let L = `(α,ω,ε){
−→
G ‖

B} be a well-formed loop. Let VG = Vw (
−→
G) and VB = Vw (B). Then,

Psp(B, VB ∪ VG) = (Psp(B, VB))
′VG .

Corollary 2 (Monotonicity of sp). Given formulas P , Q and statement C,
(P ⇒ Q)⇒ (sp(C,P)⇒ sp(C,Q)) [sp-mono]

3 Reduced Loops and Modular Invariants

In this section, we define reduced loops, which are smaller versions of some
loop L, and modular loop invariants. A local invariant over a reduced loop is
modular when it can strengthen a preexisting inductive invariant ℘L over the
complete loop. Our notion of modularity is generic with respect to ℘L. In par-
ticular, it is not limited to the stability properties that we use in our patterns
in section 4.

Maximal and Compositional Pattern-Based Loop Invariants 7

3.1 (Inductive) ιL-Loop Invariants

We rely on the classical relation �par of satisfaction under partial correctness
[13, 21] of Hoare triples to define inductive loop invariants. Invariants are defined
relative to a given initialisation predicate providing initial (abstract) values to
loop variables, defined as ιL ≡ ιV , where V is the set of all variables occurring in
L. An ιL-loop invariant is an inductive loop invariant under ιL initial conditions.
Also, we say that ιL covers φ when V (φ) ⊆ V (ιL). In the following, we assume
that the initialisation predicate ιL covers all properties stated on L.

Definition 2 ((Inductive) ιL-Loop Invariant). φ is an ιL-loop invariant on
the loop L = `(α,ω,ε){B}, iff
(a) ιL covers φ; (b) (i = α ∧ ιL)⇒ φ; and
(c) �par {α ≤ i ≤ ω ∧ ¬ε ∧ φ} B; i := i+ 1 {φ}.

Suppose we want to state that some ψ is an ιL-loop invariant of `(α,ω,ε){B}. We
shall use the following lemma, whose proof is omitted due to lack of space.

Lemma 1 (ιL-Loop Invariant Definition via sp). ψ is an ιL-loop invariant
on loop L = `(α,ω,ε){B} iff:
(a) ιL covers ψ; (b) i = α ∧ ιL ⇒ ψ(α);
(c) sp(B,α ≤ i ≤ ω ∧ ¬ε ∧ ψ(i))⇒ ψ(i+ 1).

3.2 Modular (Reduced) Loop Invariants

A reduced loop from a given loop L = `(α,ω,ε){B}, is a loop with same index
range as L but whose body Br occurs within B (i.e. G(Br) ⊆ G(B)). These
loops take the forms Lr = `(α,ω,ε){Br} or L′

r = `(α,ω){Br}, and are noted
L↓Lr

and L↓L′
r
. Local variables are variables updated in reduced loops L↓Lr

,
and external variables are variables appearing without being assigned in L↓Lr .
To deduce properties on L↓Lr , we assume that an inductive loop invariant ℘L
states properties over variables external to L↓Lr

. The notion of relative-inductive
invariants, borrowed from [3], captures this style of reasoning: φ is inductive
relative to another formula ℘L, on loop L, when the inductive step of the proof
of φ holds under the assumption ℘L.

Definition 3 (Relative Inductive Invariant). A property φ is ℘L-inductive
on loop L, if
(1) ιL covers ℘L ∧ φ and (i = α ∧ ιL)⇒ φ;
(2) sp(B,α ≤ i ≤ ω ∧ ¬ε ∧ ℘L(i) ∧ φ(i))⇒ φ(i+ 1).

φ is a ℘L-modular loop invariant on loop Lr, if φ only refers to variables locally
modified in Lr, and if φ holds inductively on Lr relatively to the property ℘L.

Definition 4 (℘L-Modular Loop Invariant). φ is a ℘L-modular loop invari-
ant for loop Lr if (a) V (φ) ⊆ Vw(Lr); and (b) φ is ℘L-inductive on Lr.

8 Virginia Aponte, Pierre Courtieu, Yannick Moy, and Marc Sango

a := 0; b := 0;
loop i in 1..10 do

a :=i ;
b := a+1;

end

init : ιL = (a = 0 ∧ b = 0)
external: ℘L = (a = i− 1)
loop i in 1..10 do
{ true → a :=i }

‖ { true → b := a+1 }
end

loop i in 1..10 do
{ true → b := a+1 }

end

local : φb = (b = i− 1)

final global inv: ℘L ∧ φb

Fig. 3. (a) Loop L (b) Previous properties (c) Reduced loop L↓Lb

Example 1 (A ℘L-modular loop invariant). Consider the loop L and formulas
given in Fig. 3. ιL corresponds to initialisation conditions (with concrete values,
for illustration). Let us call L↓Lb

the loop reduced to the group assigning to
b in L, given in Fig. 3.(c). We take ℘L as a previously known property over
variables external to L↓Lb

. Clearly, ℘L is an ιL-loop invariant on L, but it does
not hold on the reduced loop L↓Lb

. φb(i) does not hold inductively by itself on
the reduced loop, yet ℘L ∧ φb(i) is an inductive invariant of L↓Lb

. Therefore,
φb(i) is ℘L-inductive on L↓Lb

. Moreover, φb(i) only refers to variable b modified
locally in L↓Lb

. It follows that φb(i) is ℘L-modular on L↓Lb
. Additionally, as

℘L holds inductively on the entire loop, according to the theorem 1 below, the
strengthened invariant ℘L ∧ φb is indeed an ιL-invariant on the whole loop L.

Informally, theorem 1 says that whenever a property ℘L, used to deduce that
a local property φ holds on a reduced loop, is itself an inductive invariant on the
entire loop, then ℘L ∧ φ is an inductive invariant of the entire loop.

Theorem 1 (Compositionality of ℘L-Modular Invariants). Assume the

loops L = `(α,ω,ε){
−→
Gk ‖ B} and LB = `(α,ω,ε){B} are well-formed. Assume that

(h1) φ is a ℘L-modular loop invariant on LB; (h2) ℘L is an ιL-invariant on L.
Then, ℘L ∧ φ is an ιL-invariant on L.

Proof. Following lemma 1, ℘L ∧ φ is an ιL-invariant of L, if: (a) ιL covers

℘L ∧ φ; (b) i = α⇒ ℘L ∧ φ; and (c) A⇒ φ(i+ 1) ∧ ℘L(i+ 1)

where A = sp({
−→
Gk ‖ B}, α≤ i≤ω ∧ ¬ε ∧ ℘L(i) ∧ φ(i)). From (h1) conditions (a)

and (b) hold by definition. By (h2) and lemma 1 we know that A⇒ ℘L(i+ 1).
Thus, we only need to prove A ⇒ φ(i + 1). We use sp definition to develop A

and deduce (by forgetting Psp(
−→
Gk, V)):

A⇒ ∃V ′.(α≤ i≤ω ∧ ¬ε(i)′V ∧ ℘L(i)
′V ∧ φ(i)

′V ∧ Psp(B, V)),

where VG = Vw(
−→
Gk), VB = Vw(B) and V = VG ∪ VB . By corollary 1, we can re-

place Psp(B, V) by (Psp(B, VB))
′Vg . Moreover, by hypothesis of well-formedness

on L, we know that VG∩VB = ∅. Therefore, any predicate P
′V can be written as

(P
′Vb)

′Vg and we obtain (1) below, where C ≡ sp(B,α ≤ i ≤ ω∧¬ε∧℘L(i)∧φ(i)),

which can be expanded to C ≡ ∃V ′
B .α≤ i≤ω ∧ ¬ε

′Vb ∧ ℘
′Vb

L ∧ φ
′Vb ∧ Psp(B, VB).

On the other hand, by (h1) we also have (2) below:

Maximal and Compositional Pattern-Based Loop Invariants 9

A⇒ ∃V ′
G.C

′Vg (1) C ⇒ φ(i+ 1) (2)

To conclude, we need to rewrite (1) and (2) with explicit universal quantifications
on the free variables ~x of these formulas (see 2.1):

∀~x,A⇒ ∃V ′
G.C

′Vg (1′) ∀~x,C ⇒ φ(i+ 1) (2′)

We now prove that ∀~x,A⇒ φ(i+ 1). Suppose that for some ~a, A[~x← ~a] holds,
let us prove that φ(i+ 1)[~x← ~a] also holds. By (1′) we have: ∃V ′

G.(C
′Vg [~x← ~a]).

Therefore there exists v1 . . . vn such that C
′Vg [~x ← ~a][V ′

G ← ~vi] holds, which is

identical to C
′Vg [V ′

G ← ~vi][~x← ~a] which is itself identical to C[VG ← ~vi][~x← ~a].
We can now apply (2′) and deduce φ(i+1)[VG ← ~v][~x← ~a]. Since VG∩V (φ) = ∅
we finally have φ(i+ 1)[~x← ~a]. ut

4 Value Preserving Loop Patterns

In this section, we introduce the value preservation property for expressions, and
we give sufficient conditions for expressions to be value preserving. We define
℘L-value preserving loop patterns, as a particular instance of reduced loops
restricted to value preserving expressions4. We present three concrete patterns
and we provide the corresponding modular invariants.

4.1 Value Preservation

Informally, an expression e occurring in loop L is value preserving if, on any run
through the loop, e is equal to its initial value e0. Here, we are interested in
being able to prove that e = e0 under the assumption of a preexisting inductive
loop invariant ℘L.

Definition 5 (Initial Value by ιl). The initial value of expression e(i) by
initialisation ιL, noted e0(i), is the result of replacing any variable x in e, except

i, by its initial value x0 according to ιL: e0(i)
def
= e(i)[x← ιL(x)].

Definition 6 (Initial value preservation). An expression e(i) is said to be
℘L-vp in loop L if there exists an ιL-loop invariant ℘L on L such that:

℘L(i)⇒ (e(i) = e0(i)).

The rationale behind value preservation is that, given a preexisting inductive
loop invariant ℘L, a ℘L-value preserving expression e can be replaced by its
initial value e0 when reasoning on the loop body using sp.

4 More precisely, to expressions whose location expressions defined over external vari-
ables are value preserving.

10 Virginia Aponte, Pierre Courtieu, Yannick Moy, and Marc Sango

4.2 Sufficient Conditions for Value Preservation

In this section, we generalize the notion of stability introduced in [15], in order
to express the following properties:

1. a scalar variable x keeps its initial value x0 throughout the loop;
2. there exist a position p(i) in array A, which can be expressed as a constant

offset from i, such that every cell value in the array slice A[p(i) . . . n] is equal
to its initial value.

For array A and loop L, these properties are formally expressed by:

`x ≡ x = x0 Scalar stability

4A,p ≡ ∀j.(j ≥ p(i)⇒ A[j] = A0[j]) Array p− stability

If 4A,p holds, we say that A is p-stable. When p = α this property is equivalent
to A = A0. To increase readability, the latter notation is preferred.

A sufficient condition for a variable to be stable is when this variable is not
updated at all in the loop. An array B in this case verifies the property 4B,α.
Finding p-stability on some array A can be done by examining all updates to
cells A[pk] and choosing p as p = max (−→pk). Assume now that array A is known
to be p-stable, and that A[a] occurs in some expression e. If A[a] corresponds
to an access in the stable slice of A, then e is value preserving, which can be
verified by checking that a ≥ p is a loop invariant.

Running example [Step 2: Extracting a preexisting global invariant] The variable
erased is never assigned in this loop, so it is stable. Array A is updated only in
cell A[i], entailing i-stability for A. Thus, we can extract the following inductive
invariant for our loop: ℘L = `erased ∧4A,i.

4.3 Loop Patterns

Given a preexisting inductive loop invariant ℘L, we define loop patterns relative
to ℘L, or ℘L-loop patterns, as triples Pn = (Ln, Cn, φn). Ln is a loop scheme
given by a valid loop construction in L; Cn is a list of constraints requiring ℘L-
vp property on generic sub-expressions e1, e2 . . . of Ln; φn is a local invariant
referring only to variables local to Ln.

Fig. 4 presents three concrete loop patterns. For each of them, the corre-
sponding loop scheme is given in the upper-left entry, the constraints in the
upper-right entry, and the invariant scheme in the bottom entry. To identify
the pattern Pn within the source loop L, Ln must match actual constructions
occurring in L, and the pattern constraints must be satisfied. In that case, we
generate the corresponding local invariant by instantiating φn with matched
constructions from L. We establish in lemmas 2, 3 and 4 that the local property
φn is indeed a ℘L-modular invariant on the reduced loop L↓Ln , for each of the
three loop patterns presented here. Thus, according to the compositional result
given in theorem 1, each generated local invariant can strengthen the preexisting
ιL-invariant ℘L to obtain a richer ιL-invariant for loop L.

Maximal and Compositional Pattern-Based Loop Invariants 11

1. Search Pattern

L1 = `(α,ω,ε){skip} ε is ℘L-vp.

φ1(i) = ∀j, α ≤ j < i⇒ ¬ε0(i)

2. Single Map Pattern

L2 = `(α,ω){B2} e(i) is ℘L-vp.

B2 = true→ A[i] := e(i)

φ2(i, A) =
∀j.(α ≤ j < i⇒ A[j] = e0(j)) ∧
∀j.(j ≥ i)⇒ A[j] = A0[j]

3. Filter Pattern

L3 = `(α,ω){B3}
B3 = {g(i) → A[v] := e(i)}

‖ {g(i) → v := v + 1}
g, e are ℘L-vp.

φ3(i, v, A) =

∀j.(α ≤ j < i ∧ g0(j)⇒ ∃k.(v0 ≤ k < v ∧A[k] = e0(j)))
∧∀k.(v0 ≤ k < v ⇒ ∃j.(α ≤ j < i ∧ g0(j) ∧A[k] = e0(j)))

∧∀k1, k2.∃j1, j2.v0 ≤ k1 ≤ k2 < v ⇒
(
α ≤ j1 ≤ j2 ≤ i

(
∧ A[k1]=e0(j1)

∧ A[k2]=e0(j2)

))
∧∀j.(j ≥ v ⇒ A[j] = A0[j])

Fig. 4. Three ℘L-Loop Patterns

Running example [Step 3: Discovering patterns, generating local properties] We
take ℘L ≡ `erased ∧ 4A,i (see Step 2) as preexisting inductive invariant. By
pattern matching, we can recognize three patterns in L: the Search pattern on
line 1; the Single Map pattern on line 6; the Filter pattern, once on lines 2-3, and
once again on lines 4-5. We must check that all pattern constraints are respected.
First note that ℘L entails i-stability for A, and therefore the location expression
A[i] (occurring in both instances of the Filter pattern) is ℘L-vp, as well as
expressions A[i] = 0 in the Search pattern, and A[i] < 0 in the Filter pattern.
Finally, ℘L entails stability of erased in the Map pattern. We instantiate the
corresponding invariant schemes and obtain the local invariants shown in Fig. 5.
Note that φ3(i, b, B) and φ3(i, c, C) correspond to different instances of the Filter
pattern. We unfold only one of them here.

φ1(i) = ∀j, α ≤ j < i⇒ ¬(A0[i] = 0)

φ2(i, A) = ∀j.(α ≤ j < i⇒ A[j] = erased0) ∧ ∀j.(j ≥ i)⇒ A[j] = A0[j]

φ3(i, c, C) = . . .

φ3(i, b, B) =


∀j.(α ≤ j < i ∧A0[j] < 0⇒ ∃k.(b0 ≤ k < b ∧B[k] = A0[j]))
∧ ∀k.(b0 ≤ k < b⇒ ∃j.(α ≤ j < i ∧A0[j] < 0 ∧B[k] = A0[j]))

∧ ∀k1, k2.∃j1, j2.b0 ≤ k1 ≤ k2 < b⇒
(
α≤j1≤j2
∧ j2≤i

(
∧ B[k1]=A0[j1]

∧ B[k2]=A0[j2]

))
∧ ∀j.(j ≥ b⇒ B[j] = B0[j])


Fig. 5. Generated local invariants for the running example

12 Virginia Aponte, Pierre Courtieu, Yannick Moy, and Marc Sango

In the following we provide lemmas stating the modularity of the pattern prop-
erties given in Fig. 4. The proof of lemma 4 is omitted.

Lemma 2 (Search Pattern Invariant Modularity). Given ιL, ℘L such that
ε is ℘L-vp, φ1(i) is a ℘L-modular loop invariant on L1, for φ1(i), L1 from fig. 4.

Proof. By definition 4 we need to prove that V (φ1) ⊆ Vw(L1), which is trivial
since V (φ1) = ∅, and that φ1 is ℘L-inductive. By definition 3 this amounts to
proving that (1) i = α∧ι⇒ φ1 and (2) sp(skip, α ≤ i ≤ ω∧¬ε∧℘L(i)∧φ1(i))⇒
φ1(i+ 1). Since i = α∧ ιL implies that α ≤ j < i is false, (1) holds. Let us prove
(2) by unfolding the definition of sp:

sp(skip, α ≤ i ≤ ω ∧ ¬ε(i) ∧ ℘L(i) ∧ φ1(i)) = α ≤ i ≤ ω ∧ ¬ε(i) ∧ ℘L(i) ∧ φ1(i)

which implies φ(i)1 and ¬ε0(i) because ε is ℘L-vp. Therefore φ1(i+1) holds. ut

Lemma 3 (Single Map Pattern Invariant Modularity). Given ιL, ℘L such
that e(i) is ℘L-vp, φ2(i, A) is a ℘L-modular invariant of L2, for φ2(i, A) and L2

as given in fig. 4.

Proof. By definition 4 and 3 we have to prove (ε is false in this pattern):

– V (φ2) ⊆ Vw(L2) which follows from V (φ2) = {A};
– i = α ∧ ιL ⇒ φ2(i, A), which follows from i = α ∧ ιL ⇒ φ2(α,A0) and

as ιL ⇒ (A = A0);
– sp(B2, α ≤ i ≤ ω ∧ ℘L(i, A) ∧ φ2(i, A))⇒ φ2(i+ 1) which we prove below.

Suppose that sp(B2, α ≤ i ≤ ω ∧ ∧℘L(i, A) ∧ φ2(i, A)) holds and let us prove
that φ2(i+ 1, A) holds. By definition of sp there exists A′ such that:

(a) ℘L(i, A′) (b) φ2(i, A′) (c) A[i] = e(i, A′) (d) ∀j.j 6= i⇒ A[j] = A′[j]

Moreover, the pattern constraint (e(i) is ℘L-vp) and (a) entails e(i, A′) = e0(i, A0).
By (c) and (d) we know that A and A′ differ only on cell A[i] which contains
e(i, A′) which allows to prove easily that φ2(i+ 1, A) also holds. ut

Lemma 4 (Filter Pattern Invariant Modularity). For all ιL, ℘L such that
g(i) and e(i) are ℘L-vp, φ3(i, v, A) as given in figure 4 is a ℘L-modular loop
invariant of the loop L3 of figure 4.

Running example [Step 4: Aggregating local modular invariants] We know that
the preexisting invariant ℘L holds as ιL-invariant on L. Also, by lemma 2, φ1
is ℘L-modular on L1 = `(α,ω,ε) {skip}, and by lemmas 3 and 4 φ2 and φ3 are
℘L-modular on loops Lk = `(α,ω) {Bk} respectively for k = 1, 2. It is easy to
obtain from these results, and using property sp-mono, that φ2 and φ3 are ℘L-
modular on loops Lk = `(α,ω,ε){Bk}. Therefore, we can apply the theorem 1, and
compose all these invariants to obtain the following richer ιL-invariant holding
on L: ℘L ∧ φ1(i) ∧ φ2(i, A) ∧ φ3(i, b, B) ∧ φ3(i, c, C).

Maximal and Compositional Pattern-Based Loop Invariants 13

5 Maximal Loop Invariants

In this section, we present maximality criteria on local loop invariants. A local
invariant is maximal when it is stronger than any invariant on the reduced
loop. For consistency, we compare loop invariants only if they are covered by
the same initialisation predicate. Our notion of loop invariant maximality is
independent of the language chosen to write those loops: it can be applied to
any loop language equipped with a strong postcondition semantics. We show
that the loop invariants we defined in section 4, for the three concrete patterns
we introduced, are indeed maximal.

Definition 7 (Maximal ιL-Loop Invariant). φ is a maximal ιL-loop invari-
ant of loop L if (1) φ is an ιL-loop invariant for L, and (2) for any other ιL-loop
invariant ψ of L, φ⇒ ψ is an ιL-loop invariant of L.

Theorem 2 (Loop Invariant Maximality). Let L = `(α,ω,ε){B} and assume
that φ is some formula. φ is a maximal ιL-invariant of L if

(a) ιL covers φ
(b) ∀i, i = α ∧ ιL ⇔ i = α ∧ φ(i)
(c) ∀i, sp(B,α ≤ i ≤ ω ∧ ¬ε(i) ∧ φ(i))⇔ α ≤ i ≤ ω ∧ φ(i+ 1)

Definition 8 (Local Invariant Maximality). Let L = `(α,ω,ε){
−→
G ‖ B} be a

well-formed loop, and L↓LB
a loop reduced to body B. Let ιB be an initialisation

restricted to variables occurring in L↓LB
, and ιV an initialisation restricted to

variables external to L↓LB
(V = Vnw (B)). If ιV ∧ φB is a maximal ιB-loop

invariant on L↓LB
, then φB is locally maximal on the reduced loop L↓LB

.

It can be shown that the loop invariants φ1(i), φ2(i), φ3(i) given in Fig. 4 for
our patterns, and holding as ℘L-modular loop invariants respectively on reduced
loops L↓L1

, L↓L2
and L↓L3

, are additionally locally maximal on each one of these
loops. We claim local maximality for the Single Map pattern invariant.

Lemma 5 (Single Map Local Maximality). Let L be a well-formed loop.
φ2 is locally maximal on the reduced loop L↓L2

for φ2, where L2 is as defined in
Fig. 4.

Running example [Maximality of the generated loop invariant] When a loop L
is totally matched by ℘L-patterns, we can show that the obtained ιL-invariant
is maximal on L. The details of the proof are beyond the scope of this article.
As a corollary, the result invariant generated in section 4.3 is ιL-maximal on L.

6 Conclusion

We present a novel and compositional approach to generate loop invariants.
Our approach complements previous approaches: instead of generating relatively
weak invariants on any kind of loop, we focus on generating maximal invariants

14 Virginia Aponte, Pierre Courtieu, Yannick Moy, and Marc Sango

on particular loop patterns, in a modular way. Our method applies to programs
in an intermediate language of guarded and parallel assignments, to which source
programs should first be translated. We have designed such a translation from
a subset of the SPARK language, based on an enriched version of static single
assignment form. The central idea in our approach is to generate local modular
loop invariants on reduced versions of the entire loop. This is supported by
the introduction of a preexisting loop invariant strengthened by local modular
loop invariants, which states external properties (i.e. properties which do not
necessarily hold locally) on the complete loop. This gives us the power to reuse
and compose invariants obtained locally, as long as the external property used
to deduce them is itself an inductive invariant. Since there is no constraint on
the way the external invariant is found, our approach fits in smoothly with other
automated invariant generation mechanisms. We propose a specialized version
of reduced loops, for which the external invariant is a stability property of some
locally accessed variables. We give loop pattern schemes and syntactic criteria
to generate invariants for any loop containing these patterns. Going further
we could develop a repository of pattern-driven (proven maximal) invariants,
to address frequent and known loop patterns. We expect that combining this
technique with other ones (and with itself) will be very efficient. Independently,
we present conditions on arbitrary loop invariants to be maximal, and state
results of local maximality for our loop patterns.

Acknowledgements We would like to thank Laura Kovács for her feedback
on an early version of this work, and Benjamin Brosgol for his careful review of
the manuscript.

References

1. J. Barnes. High Integrity Software: The SPARK Approach to Safety and Security.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2003.

2. D. Beyer, T. A. Henzinger, R. Majumdar, and A. Rybalchenko. Path invariants.
In Proceedings of the 2007 ACM SIGPLAN Conference on Programming language
Design and Implementation, PLDI ’07, pages 300–309, New York, NY, USA, 2007.
ACM.

3. A. Bradley and Z. Manna. Property-directed incremental invariant generation.
Formal Aspects of Computing, 20:379–405, 2008. 10.1007/s00165-008-0080-9.

4. M. Colón, S. Sankaranarayanan, and H. Sipma. Linear invariant generation using
non-linear constraint solving. In Proc. 15th International Conference on Computer
Aided Verification, LNCS, pages 420–432. Springer, 2003.

5. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among vari-
ables of a program. In Proceedings of the 5th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages, POPL ’78, pages 84–96, New York, NY,
USA, 1978. ACM.

6. E. W. Dijkstra. Guarded commands, non-determinacy and formal derivation of
programs. Comm. ACM, 18(8):453–457, 1975.

7. E. W. Dijkstra and C. S. Scholten. Predicate calculus and program semantics.
Springer, 1990.

Maximal and Compositional Pattern-Based Loop Invariants 15

8. Escher C Verifier, 2012. http://www.eschertech.com/products/ecv.php.
9. S. Graf and H. Säıdi. Construction of abstract state graphs with pvs. In Proceedings

of the 9th International Conference on Computer Aided Verification, CAV ’97,
pages 72–83, London, UK, 1997. Springer-Verlag.

10. S. Gulwani, B. McCloskey, and A. Tiwari. Lifting abstract interpreters to quanti-
fied logical domains. In Proceedings of the 35th annual ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, POPL ’08, pages 235–246,
New York, NY, USA, 2008. ACM.

11. N. Halbwachs and M. Péron. Discovering properties about arrays in simple pro-
grams. In Proceedings of the 2008 ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’08, pages 339–348, New York, NY,
USA, 2008. ACM.

12. W. R. Harris, S. Sankaranarayanan, F. Ivančić, and A. Gupta. Program analysis
via satisfiability modulo path programs. In Proceedings of the 37th annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
’10, pages 71–82, New York, NY, USA, 2010. ACM.

13. C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM,
12:576–580, October 1969.

14. L. Kovács. Invariant generation for p-solvable loops with assignments. In Pro-
ceedings of the 3rd International Conference on Computer science: Theory and
Applications, CSR’08, pages 349–359, Berlin, Heidelberg, 2008. Springer-Verlag.

15. L. Kovács and A. Voronkov. Finding loop invariants for programs over arrays us-
ing a theorem prover. In Proceedings of the 2009 11th International Symposium on
Symbolic and Numeric Algorithms for Scientific Computing, SYNASC ’09, Wash-
ington, DC, USA, 2009. IEEE Computer Society.

16. L. Mauborgne and X. Rival. Trace partitioning in abstract interpretation based
static analyzers. In Proc. ESOP’05, LNCS 3444:5–20.

17. K. L. McMillan. Quantified invariant generation using an interpolating saturation
prover. In Proceedings of the Theory and Practice of Software, 14th international
conference on Tools and algorithms for the construction and analysis of systems,
TACAS’08/ETAPS’08, pages 413–427, Berlin, Heidelberg, 2008. Springer-Verlag.

18. K. L. McMillan. Interpolation and sat-based model checking. In Proc. 15th Inter-
national Conference on Computer Aided Verification, LNCS, pages 1–13. Springer,
2003.

19. K. L. McMillan. Lazy abstraction with interpolants. In CAV, volume 4144 of
LNCS, pages 123–136. Springer, 2006.

20. A. Miné. The octagon abstract domain. Higher Order Symbol. Comput., 19:31–100,
March 2006.

21. H. R. Nielson and F. Nielson. Semantics with Applications: a formal introduction.
John Wiley & Sons, Inc., New York, NY, USA, 1992.

22. RTCA. Formal methods supplement to DO-178C and DO-278A. Document RTCA
DO-333, RTCA, December 2011.

23. S. Sankaranarayanan, H. B. Sipma, and Z. Manna. Non-linear loop invariant gen-
eration using Gröbner bases. In Proceedings of the 31st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’04, pages 318–329,
New York, NY, USA, 2004. ACM.

24. R. Sharma, I. Dillig, T. Dillig, and A. Aiken. Simplifying loop invariant generation
using splitter predicates. In Proceedings of the 23rd International Conference on
Computer Aided Verification, CAV ’11, New York, NY, USA, July 2011. ACM.

25. SPARK Pro, 2012. http://www.adacore.com/home/products/sparkpro/.

16 Virginia Aponte, Pierre Courtieu, Yannick Moy, and Marc Sango

Appendix A: Additional Material for Referees

In this section we present some additional patterns and detail the proofs of some
of the properties stated in this article.

A.1: Some Additional Patterns

In the following we shall use the following notations:

btw(j, k, i) ≡ j < k < i k is between j, i

iter(i) ≡ i− α+ 1 number of iterations

All the patterns given below are defined on loops of the form Lr = `(α,ω){Br},
i.e., where the loop exit condition is false. For simplicity, we detail only its
corresponding body pattern Br. For all patterns we assume the existence of
some preexisting inductive loop invariant ℘L, and initialisation ιL. Two loop
examples and their corresponding generated invariants are given in figure 6.

Knwown Single Update Pattern A scalar variable is modified in a single as-
signment, whose guard is a ℘Lp -value-preserving expression, and it receives a
℘Lp -value-preserving expression.

Br
def
= {g(i)→ a := e(i)} where g(i), e(i) are ℘L-vp

φ(i, a) = ((a = a0) ∧ ∀j.(α ≤ j < i⇒ ¬g0(j)))
∨ (∃j.(α ≤ j < i ∧ g0(j) ∧ a = e0(j)) ∧ ∀k.(btw(j, k, i)⇒ ¬g0(k)))

Known Single Add-Up Pattern A scalar variable a is modified at most in a single
assignment, whose guard is a value-preserving expression, and it receives its own
previous value plus a constant n.

Br
def
= {g(i)→ a := a+ n} where g(i) is ℘L-vp

φ(i, a) = ((a = a0) ∧ ∀j.(α ≤ j < i⇒ ¬g0(j)))

∨ ∃j.

 α ≤ j < i ∧ g0(j)
∧ ∃k.(1 ≤ k ≤ iter(j) ∧ a = a0 + n ∗ k)
∧ ∀k.(btw(j, k, i)⇒ ¬g0(k))



Single Min/Max Pattern A scalar variable a is modified in a single assignment,
whose guard is a comparison between the variable and a value-preserving ex-
pression, and it receives that expression.

Maximal and Compositional Pattern-Based Loop Invariants 17

Br
def
= {a • e(i)→ a:=e(i)} where • ∈ {<,≤, >,≥} and e(i) is ℘L-vp.

φ(i, A) =
((a = a0) ∧ ∀j.(α ≤ j < i⇒ ¬(a ◦ e0(j))))

∨
(
∃j.(α ≤ j < i ∧ a = e0(j)) ∧ ∀k.(btw(j, k, i)⇒ ¬(a0 • e0(k)))
∧ ∀k.(α ≤ k < i⇒ a ◦ e0(k))

)

where ◦ can be deduced from • as follows:
• < ≤ > ≥
◦ ≥ ≥ ≤ ≤

Known Multiple Map Pattern An array variable A is modified in more than one
assignment, all of whose guards are value-preserving expressions, and it receives
in each a value-preserving expression.

Br
def
= { g1(i)→ A[i] := e1(i)

...
gn(i)→ A[i] := en(i)}

where g(i) is ℘L-vp

φ(i, A) = ∀j.
∧
r∈[1...n](α ≤ j < i ∧ gr0(j)⇒ A[j] = er0(j))

∧∀j.(α ≤ j < i ∧
(
(
∧
r∈[1...n] ¬gr0(j))⇒ A[j] = A0[j]

)
∧∀j.(¬(α ≤ j < i)⇒ A[j] = A0[j])

Program Description Invariant

for i in 0..n loop

if (A[i] >0)

then c:=c+1;

end loop

Counting positives

(c = c0 ∧ ∀j.(α ≤ j < i⇒ ¬(A0[j] > 0)))
∨∃j.((α ≤ j < i ∧A0[j] > 0)
∧∃k.(1 ≤ k ≤ j ∧ c = c0 + k)
∧∀k.(j < k < i⇒ ¬(A0[k] > 0)))

m:= A[1];

for i in 0..n loop

if (A[i] < m)

then m:= A[i];

end loop;

Searching for min

(m = m0 ∧ ∀j.(α ≤ j < i⇒ ¬(A0[j] < m0)))
∨

(∃j.(α ≤ j < i ∧m = A0[j]) ∧
∀k.(1 ≤ k < i⇒ m ≥ A0[k]))

Fig. 6. Loop examples and generated invariants

A.2 : Additional Proofs

Given a set of locations, and a set of values, we consider states σ defined in the
usual way, that is, as a partial function mapping locations to values.We assume

18 Virginia Aponte, Pierre Courtieu, Yannick Moy, and Marc Sango

given an operational semantics on L given by the relation. The semantics of loops
in L is given by the following relation < p, σ > σ′. We rely on the following
semantic definition [21] of strongest postcondition sp predicate transformer.

Definition 9 (Predicate sp(C,P)). For any stament C and predicate P we
define the predicate sp(C,P) as being such that:

σ′ � sp(C,P)⇔ ∃σ.(< C, σ > σ′ ∧ σ � P)

Proof of lemma 1 (Invariant Definition by sp)

Proof. Let assume ψ is an ιL-invariant. Using ιL-invariant definition, condition
1 follows immediately, and the Hoare triple {α ≤ i ≤ ω ∧ ¬ε ∧ ψ(i)} B; i :=
i + 1 {ψ(i)} must hold. As, i /∈ Vw(B), we necessarily have: {α ≤ i ≤ ω ∧ ¬ε ∧
ψ(i)} B {ψ(i+ 1)} i := i+ 1 {ψ(i)}, as otherwise, ψ would not be an inductive
invariant. Using sp-strg on the triple {α ≤ i ≤ ω ∧¬ε∧ ψ(i)} B {ψ(i+ 1)} we
obtain sp(B,α ≤ i ≤ ω ∧ ¬ε ∧ ψ(i))⇒ ψ(i+ 1) as desired.
Assume now conditions 1 and 2, and let σ1 be a state such that σ1 �par sp(B,α ≤
i ≤ ω ∧ ¬ε ∧ ψ(i)). Then, by sp definition: ∃σ0. < C, σ0 > σ1 ∧ σ0 � α ≤ i ≤
ω ∧ ¬ε ∧ ψ(i). On the other hand, by 2, we obtain that σ1 �par ψ(i + 1) holds.
Using definition on partial correctness satisfaction, we obtain that {α ≤ i ≤
ω ∧¬ε∧ ψ(i)} B {ψ(i+ 1)} holds. Clearly, {ψ(i+ 1)} i := i+ 1 {ψ(i)} holds as
well and we obtain that {α ≤ i ≤ ω∧¬ε∧ψ(i)} B; i := i+ 1 {ψ(i)} holds. This,
together with 1, shows that ψ is an ιL-invariant for L. ut

Proof of corollary 1 (Renaming of External Variables in sp)

Proof. By definition, Psp(B, VB∪VG) results in a formula where (a) all variables
occurring in VB are replaced by x′ only on read expressions within B, and (b) all
variables x ∈ VG occurring in B are replaced by x′. As L is well formed, we know
that VG∩VB = ∅ and therefore, we can separate substitutions performed on VG’s
variables from those performed on VB ’s variables. Substitutions performed by
(a) can be obtained from Psp(B, VB). From Psp definition, its easy to see that
this formula is equal to Psp(B, VB ∪ VG) except for all variables in VG that are
renamed by their primed version. ut

Proof of lemma 4 (Filter Pattern Invariant Modularity) In the follow-
ing we denote φ3(i, v, A) as the conjunction P (i, v, A) ∧Q(i, v, A) ∧R(i, v, A) ∧
S(i, v, A). We also express all program expressions and logical expressions as
functions (or predicates) on (i, v, A). For instance, ℘L and e are denoted ℘L(i, v, A)

and e(i, v, A). We also use the notation ℘
′{v,A}
L = ℘L(i, v′, A′).

Proof. By definition 4 and 3 we have to prove:

– V (φ3) ⊆ Vw(L3) which follows from V
def
= V (φ3) = {v,A};

– i = α ∧ ιL ⇒ φ3(i, v, A), which follows from i = α ∧ ιL ⇒ φ3(α, v0, A0) and
that ιL ⇒ (v = v0 ∧A = A0);

Maximal and Compositional Pattern-Based Loop Invariants 19

– sp(B,α ≤ i ≤ ω∧¬ε(i, v, A)∧℘L(i, v, A)∧φ3(i, v, A))⇒ φ3(i+ 1) which we
prove below.

Suppose that sp(B,α ≤ i ≤ ω ∧ ¬ε ∧ ℘L(i, v, A) ∧ φ3(i, v, A)) holds and let us
prove that φ3(i+ 1, v, A) holds. By definition of sp this implies that there exists
v′ and A′ such that the following properties hold:

(a) α ≤ i ≤ ω (e) g(i, v′, A′)⇒ v = v′ + 1
(b) ¬ε(i, v′, A′) (f) ¬g(i, v′, A′)⇒ v = v′

(c) ℘L(i, v′, A′) (g) g(i, v′, A′)⇒ A[v′] = e(i, v′, A′)
(d) φ3(i, v′, A′) (h) ∀j.(¬(g(i, v′, A′) ∧ j = v′))⇒ A[j] = A′[j]

Notice moreover that the constraints and (c) imply the following:(i) g(i, v′, A′) =
g(i, v0, A0), (j) e(i, v′, A′) = e(i, v0, A0) and (k) ε(i, v′, A′) = ε(i, v0, A0). We now
prove φ3(i + 1, v, A) by case on the truth of g(i, v′, A′) (which is equivalent to
g0(i, v′, A′) by constraints).

– If g(i, v′, A′) is false, then by (f) and (h) we can replace v′ and A′ by v and
A in (d) and have φ3(i, v, A) and φ3(i+ 1, v, A).

– If g(i, v′, A′) is true, then by (e) we can replace v′ by v − 1 in (d) and have
φ3(i, v − 1, A′). Moreover by (h) we know that A and A′ differ only on cell
A[v′] = A[v + 1] which contains e(i, v′, A′). Together with g(i, v′, A′) it is
also easy to see that φ3(i+ 1, v, A) also holds. ut

Proof of theorem 2 (Loop Invariant Maximality)

Proof. 1. Proving that φ is an ιL-invariant on L: We proceed by showing that φ
fulfills conditions of lemma 1. Condition (a) is a direct consequence of hypothesis
(1); condition (b) follows from (2); condition (c) follows from (3). Therefore, by
lemma 1, φ is a ιL-invariant on L.

2. Proving that φ is ιL-maximal: Let ψ be an ιL-invariant on L, let us prove that
φ ⇒ ψ is an ιL-invariant on L. It suffices to show that φ ⇒ ψ fulfills the three
conditions of lemma 1. The first two are easy to show:

– verifying condition (a) on φ ⇒ ψ is equivalent to ask V (φ ⇒ ψ) ⊆ V (ιL),
which holds since it holds for φ by (1) and for ψ as condition (a) is verified
on ψ.

– (i = α∧ ιL)⇒ (i = α∧φ(i)) holds by (2) and (i = α∧ ιL)⇒ (ψ(i)) holds as
condition (b) of lemma 1 is verified on ψ. Therefore, condition (b) is verified
on i = α ∧ ιL)⇒ (φ(i)⇒ ψ(i)) yielding that condition (b) holds on φ⇒ ψ.

Let us prove the last condition, (c) on φ⇒ ψ, i.e. for all i:

sp(B,α ≤ i ≤ ω ∧ ¬ε ∧ (φ(i)⇒ ψ(i)))⇒ (φ(i+ 1)⇒ ψ(i+ 1)).

First note that by (3), it suffices to show this property when α ≤ i ≤ ω, as
it holds vacuously on other values of i. Assume α ≤ i ≤ ω, and sp(B,α ≤

20 Virginia Aponte, Pierre Courtieu, Yannick Moy, and Marc Sango

i ≤ ω ∧ ¬ε ∧ (φ(i) ⇒ ψ(i))) and φ(i + 1). Let us prove this entails ψ(i + 1).
By technical lemma 6, we have ∀i, (α ≤ i ≤ ω ∧ ¬ε ∧ φ(i)) ⇒ ψ(i) and thus,
∀i, (α ≤ i ≤ ω ∧ ¬ε ∧ φ(i))⇒ (α ≤ i ≤ ω ∧ ¬ε ∧ ψ(i)). Therefore by sp-mono,
we have for all i:

sp(B,α ≤ i ≤ ω ∧ ¬ε ∧ φ(i))⇒ sp(B,α ≤ i ≤ ω ∧ ¬ε ∧ ψ(i))

Since sp(B,α ≤ i ≤ ω ∧ ¬ε ∧ φ(i)) holds when α ≤ i ≤ ω by (3), and having
φ(i + 1) by previous assumption, we obtain sp(B,α ≤ i ≤ ω ∧ ¬ε(i) ∧ ψ(i)).
Finally, since ψ is an ιL-invariant, we obtain from last result and as we know
that condition (c) holds on ψ, the desired result ψ(i+ 1). ut

The following technical lemma states that if the conditions (1), (2) and (3)
of theorem 2 hold for an ιL-invariant, then: ∀i, (α ≤ i ≤ ω ∧ ¬ε ∧ φ(i))⇒ ψ(i).

Lemma 6 (Invariant maximality technical lemma). Let ιL be an initiali-
sation on the loop L = `(α,ω,ε){B}, where i /∈ Vw(B). Let φ be a ιL-loop invariant
such that:

(1) ιL covers φ.
(2) ∀i, i = α ∧ ιL ⇔ i = α ∧ φ(i)
(3) ∀i, sp(B,α ≤ i ≤ ω ∧ ¬ε(i) ∧ φ(i))⇔ α ≤ i ≤ ω ∧ φ(i+ 1)

Then for any ιL-invariant ψ, ∀i, (α ≤ i ≤ ω ∧ ¬ε ∧ φ(i))⇒ ψ(i)

Proof. We prove i ≤ ω ∧ ¬ε ∧ φ(i) ⇒ ψ(i) by induction on i ≥ α. Without loss
of generality we suppose ω ≥ α.
1. Case i = α
As condition (b) of lemma 1 holds on ψ, we know that (ιL∧ i = α)⇒ ψ(i) holds.
By (2) we have therefore: (φ(i) ∧ i = α)⇒ ψ(i) which implies for the base case
i = α that:

(α ≤ i ≤ ω ∧ ¬ε ∧ φ(i))⇒ ψ(i)

2. Inductive step
Assume:

i ≤ ω ∧ ¬ε ∧ φ(i)⇒ ψ(i) (Hi)

Let us prove i+ 1 ≤ ω ∧ ¬ε ∧ φ(i+ 1)⇒ ψ(i+ 1). Assume:

i+ 1 ≤ ω ∧ ¬ε ∧ φ(i+ 1) (H1)

Let us prove that ψ(i+ 1) holds. We can rewrite (Hi) as:

i ≤ ω ∧ ¬ε ∧ φ(i)⇒ i ≤ ω ∧ ¬ε ∧ ψ(i)

Applying sp-mono on it we have:

sp(B, i ≤ ω ∧ ¬ε ∧ φ(i))⇒ sp(B, i ≤ ω ∧ ¬ε ∧ ψ(i))

Maximal and Compositional Pattern-Based Loop Invariants 21

By (3) on the left hand side and as condition (c) of lemma 1 holds on ψ, on the
right hand side we obtain:

α ≤ i ≤ ω ∧ φ(i+ 1)⇒ sp(B, i ≤ ω ∧ ¬ε ∧ ψ(i))⇒ ψ(i+ 1)

Since α ≤ i ≤ ω ∧ φ(i+ 1) holds by (H1), we obtain the desired result ψ(i+ 1).
ut

Proof of lemma 5 (Single Map Invariant Local Maximality) Remember
that we ignore array bound considerations. Formally, this means we assume in
our formulas that every access to array cells A[j] is done for j ∈ [α . . . ω]. That
is, arrays have exactly the same bounds as those of the oop index.

Proof. We know that L2 = `(α,ω){B2}, where B2 = true→ A[i] := e(i). Let us
define ι2 = ιV (L↓L2

) and let V2 = Vnw (L↓L2
) (h1). First note, that by definition

of Single Map Pattern, the expression e(i) must be initial value preserving in
the reduced loop L↓L2 . Without loss of generality, we assume e(i) such that any
access A[ea] to array A is such that ea ≥ i, otherwise, as A[i] is assigned in
this loop, e(i) would not be value preserving. Let us take, ℘ = ιV2

∧ 4A,i. We
show first that e(i) is ℘-vp in the reduced loop. This is clearly the case, by our
previous hypothesis on e(i), and because any other location expression x or B[k]
occurring in e necessarily corresponds to an external variable x or B, which is
not assigned within the reduced loop, and which by (h1) is initialised in ιV2 .
Thus, we necessarily have ιV2

⇒ x = x0 or ιV2
⇒ B = B0, which yields e(i) is

℘-vp. Notice now that the invariant Φ2(i) = ιV2
∧φ2(i) is actually equivalent to:

Φ2(i) ≡ ιV2
∧ ∀j.(α ≤ j < i⇒ A[j] = e0(j)) ∧ ∀j.(j ≥ i)⇒ A[j] = A0[j]

≡ ιV2
∧4A,i ∧ ∀j.(α ≤ j < i⇒ A[j] = e0(j))

≡ ℘ ∧ ∀j.(α ≤ j < i⇒ A[j] = e0(j)) (1)

According to definition 8, we must show that Φ2 = ιV2
∧ φ2 is a maximal ι2-

invariant on the reduced loop L↓L2
. We proceed by showing that Φ2 fulfills the

conditions of theorem 2, namely:

1. ι2 covers Φ2, which is immediate as V (Φ2) = V (ιV2
) ∪ V (φ2), and because

by definition V (ι2) = V (L↓L2
).

2. ∀i, i = α ∧ ι2 ⇔ i = α ∧ Φ2(i)
3. ∀i, sp(B2, α ≤ i ≤ ω ∧ Φ2(i))⇔ α ≤ i ≤ ω ∧ Φ2(i+ 1)

Let us prove condition (2). As V (L↓L2
) = Vw (L↓L2

) ∪ Vnw (L↓L2
), and because

A is the only modified variable in this loop, we know by hypothesis, that ι2 ≡
(A = A0) ∧ ιV2 . When i = α, we have ∀j.(j ≥ i ⇒ A[j] = A0[j] ≡ A = A0 and
that ∀j.(α ≤ j < i⇒ A[j] = e0(j)) is vacuosly true. Therefore, φ2(α) ≡ A = A0.
We obtain:

i = α ∧ Φ2(i) ≡ i = α ∧ ιV2
∧ (A = A0) ≡ i = α ∧ ι2

22 Virginia Aponte, Pierre Courtieu, Yannick Moy, and Marc Sango

which achieves the proof of (2). Let us prove condition (3). Let us call:

L = sp(B2, α ≤ i ≤ ω ∧ ιV2
(i) ∧ φ2(i)) R = α ≤ i ≤ ω ∧ ιV2

(i+ 1) ∧ φ2(i+ 1)

We must show L ⇔ R. We develop L by unfolding sp definition, and obtain
L ≡ ∃A′.((a) ∧ (b) ∧ (c) ∧ (d)) where

(a) ∀j.(ω ≥ j ≥ i⇒ A′[j] = A0[j]) ∧ (A[i] = e
′{A}(i)) ∧ ιV2

(b) ∀j.(α ≤ j < i⇒ (A[j] = A′[j] ∧A′[j] = e0(j))) ≡ ∀j.(α ≤ j < i⇒ A[j] = e0(j))
(c) ∀j.(ω ≥ j ≥ i⇒ (A′[j] = A0[j] ∧A[j] = A′[j]))
(d) A′[i] = A0[i] ∧ α ≤ i ≤ ω ∧ ∀j.(ω ≥ j > i⇒ A[j] = A′[j])

By (1) and (a) we can replace e(i)
′{A} by e0(i) within (a) to obtain

(a) ≡ ∀j.(ω ≥ j ≥ i⇒ A′[j] = A0[j])∧(A[i] = e0(i))∧ιV2
. Combining this result

and (b) we have that:
A[i] = e0(i)∧∀j.(α ≤ j < i⇒ A[j] = e0(j)) ≡ ∀j.(α ≤ j < i+1⇒ A[j] = e0(j)).
Combining (c) and (d) we obtain
(c)∧(d) ≡ ∃A′.A′[i] = A0[i]∧α ≤ i ≤ ω∧ ∀j.(ω ≥ j ≥ i+1⇒ A[j] = A0[j]). On
the other hand, as ιV2

does not contain i, we have ιV2
(i) ≡ ιV2

(i+1). Combining
these results and unfolding R definition we obtain:

L ≡ α ≤ i ≤ ω ∧ ιV2
∧ ∀j.(α ≤ j < i+ 1⇒ A[j] = e0(j))

∧ ∀j.(ω ≥ j ≥ i+ 1⇒ A[j] = A0[j]) ∧ ∃A′.(A′[i] = A0[i])

R ≡ α ≤ i ≤ ω ∧ ιV2
∧ ∀j.(α ≤ j < i+ 1⇒ A[j] = e0(j))

∧ ∀j.(ω ≥ j ≥ i+ 1⇒ A[j] = A0[j])

By hypothesis, A0[i] is defined as long as α ≤ i ≤ ω holds. Therefore ∃A′.(A′[i] =
A0[i]) is true, which ends the proof. ut

