
E-ACSL Frama-C plug-in

Julien Signoles

CEA LIST

Software Safety Labs

Hi-Lite Meeting

November 2011, the 29th



Reminder of E-ACSL

Executable Ansi/ISO C Speci�cation Language
http://www.open-do.org/wp-content/uploads/2011/05/e-acsl.pdf

What is it?

I executable subset of ACSL

I preserve ACSL semantics as much as possible

I compatible with ALFA as much as possible

Which goals?

I runtime assertion checking

I usable by dynamic analyses tools

I usable by static veri�cation tools like Frama-C plug-ins

I veri�cation of mixed ADA/C programs

http://www.open-do.org/wp-content/uploads/2011/05/e-acsl.pdf


E-ACSL Plug-in

I takes an annotated C program as input

I checks that each annotation belongs to E-ACSL

I returns a new C program

I equivalent to the input

I each annotation is converted into new C statements

I including (at least) one guard

I which fails at runtime if the annotation is wrong



Simpli�ed Compilation Scheme

I input:

int div(int x, int y) {

/*@ assert y != 0; */

return x / y;

}

I output:

int div(int x, int y) {

/*@ assert y != 0; */

if (y == 0) e_acsl_fail();

return x / y;

}

I a correct translation is much more complicated



Standard Compilation Scheme

I use GMP integers when required

I keep the annotation for documentation and further uses

I usually one block of statements by annotation (not always
possible, e.g. \at)

I inserted at the right code location

I declares temporary variables
I memoization to reduce memory usage
I at functiorn/global level when required

I allocates and deallocates them when required

I contains a guard if (! guard) e_acsl_fail(msg);

I may contain additional guards to prevent execution of
unde�ned values (or at least a warning right now)



Detailed Example
part 1

/*@ assert y != 0; */ z = x / y;

1. push a new environment env to translate the annotation

2. translate term y of type int to the int expression y

3. coerce y to an integer

3.1 generate a fresh mpz_t variable e_acsl_1 corresponding to y

3.2 add its declaration to env
3.3 add its initialisation to env

3.3.1 as the type of y is signed and smaller than long, generate

mpz_init_set_si(e_ascl_1, y);.

3.4 add its deallocation to env

3.4.1 generate mpz_clear(e_acsl_1);

3.5 translate y to e_acsl_1

4. translate term 0 of type integer to a fresh mpz_t variable
e_acsl_2



Detailed Example
part 2

5. as its operands are integers, translate != by using mpz_cmp

5.1 generate a fresh int variable e_acsl_3

5.2 add its declaration to env
5.3 add its initialisation to env

5.3.1 generate e_acsl_3 = mpz_cmp(e_acsl_1,e_acsl_2);

5.4 no deallocation of e_acsl_3 required
5.5 translate y != 0 to e_acsl_3 != 0

6. add the guard checking the assertion to env

6.1 e_acsl_3 != 0 already gets type int: right!
6.2 add the statement if (! (e_acsl_3 != 0)) then

e_acsl_fail("y != 0"); to env

7. extend /*@ assert y != 0; */ z = x / y; with a new
block computed from env and z = x / y;

8. pop env



E-ACSL in practice

I option -e-acsl to run the plug-in

I resulting code put in a new Frama-C project "e-acsl"

I new code linkable against GMP

I new code analysable by other analysers

I use standard Frama-C options on these projects

I option -e-acsl-project to set the resulting project name

Demo!



Plug-in Current Status
Typing

implemented

I C types

I integer

I boolean

I implicit coercions

not yet implemented

I real



Plug-in Current Status
Terms

implemented

I integer constants

I C left values

I arithmetic operators

I casts

I address &

I sizeof

I alignof

I \null (as (void *)0)

I \at (extra restriction)

I \result

not yet implemented

I \true and \false

I bitwise operators

I boolean operators

I conditional

I let binding

I typeof

I t-sets

I \base_addr, \offset and
\block_length



Plug-in Current Status
Predicates

implemented

I \true and \false

I relations (==, <=, ...)

I lazy conjunction &&

I lazy disjunction ||

I lazy implication ==>

I negation !

not yet implemented

I equivalence <==>

I exclusive or ^^

I conditionals

I let bindings

I quanti�cations

I \at

I \valid et al.

I \initialized



Plug-in Current Status
Annotations

implemented

I assertions

I function contracts

I statement contracts

not yet implemented

I behavior-speci�c
annotations

I loop annotations

I global annotations



Plug-in Current Status
Behavior Clauses

implemented

I assumes

I requires

I ensures

not yet implemented

I assigns

I decreases

I abrupt termination

I complete behaviors

I disjoint behaviors



Planning

I release of �rst prototype planned for January 2012
I based on Frama-C Nitrogen-20111001
I implement some missing useful features

I quanti�ers over integers
I what else?

I plug-in packaging and documentation
I stronger testing

I new release of E-ACSL reference manual at the same time

I use case during 2012

I implement other missing useful features during 2012

I better handling of E-ACSL unde�ned terms
I will require Frama-C Oxygen

I improve customizability on need

I internship proposal: executable C memory model



Questions

Any questions?


