
Beyond Functional Properties

Johannes Kanig, AdaCore

Hi-Lite annual meeting - May 10th, 2011



Overview

Specifications can contain errors, too

I Assertions may contain run-time errors

I valid contracts may be meaningless or unhelpful

I valid contracts may not adequately summarize a subprogram

additional features that help write correct contracts

I Absence of run-time errors in assertions (in progress)

I ”Semantic Dead Code” (not implemented)

I Detection of inconsistent preconditions (not implemented)



Assertions can contain run-time errors themselves

A principle of Hi-Lite

Proofs adopt the executable semantics of assertions

A question ...

What is the meaning of an assertion that raises a run-time error?

Our answer
It’s the wrong question: assertions should never do that.

One goal of GNATprove

Prove the absence of run-time errors in programs and assertions



Assertions generate additional checks

Given the type definitions:

type Array_Range is range 1 .. 10;

type IntArray is array (Array_Range) of Integer;

The following assertion will require an additional check:

for Index in Table ’Range loop

-- This will generate a (provable) check:

-- J in Table ’Range

pragma Assert

(for all J in Table ’First .. Index - 1 =>

Table (J) /= Value);

...

end loop;



Preconditions must be self-guarded

Preconditions

I are treated as any other assertion;

I but cannot use any context

Wrong:

procedure P (X : IntArray; I : Integer)

with Pre => (X (I) > 0);

Correct:

procedure P (X : IntArray; I : Integer)

with Pre => (I in X’Range and then X (I) > 0);

A precondition must always contain all guards that guarantee
run-time error free execution



An Alternative - Adding implicit checks

Accept:

procedure P (X : IntArray; I : Integer)

with Pre => (X (I) > 0);

In the body of P, we assume I in X’Range.

But insert the check at every call:

-- Generates two checks:

-- I in X’Range and then X(I) > 0

P (X, I);

At the call site, more context is available to prove the checks

In Hi-Lite we choose the first variant

I Requires the programmer to write the check down;

I Does not add any implicit assumptions;

I Makes a subprogram declaration self-contained.



Semantic dead code

Goal: improve postconditions

Detect situations where the postcondition is correct, but:

I The postcondition is trivial

I Some code does not contribute to the postcondition;

I Not all modified variables are mentioned in the
postcondition(?)



A trivial postcondition

function Max (X, Y : Integer) return Integer

with Post => ((if X < Y then Max ’Result = Y)

or (if X >= Y then Max ’Result = X));

function Max (X, Y : Integer) return Integer is

begin

if X < Y then

return Y;

else

return X;

end if;

end Max;

I The postcondition is trivial (always true)

I The programmer wanted to join the conditions with ”and”



An incomplete contract

procedure Set_Zero (X, Y : out Integer)

with Post => (X = 0);

procedure Set_Zero (X, Y : out Integer) is

begin

X := 0;

Y := 0;

end Set_Zero;

I The postcondition does not mention all effects;

I The assignment to Y is not used to establish the
postcondition.



Detecting redundant and inconsistent preconditions

procedure P (X, Y : in out Integer)

with Pre => (X <= 0 and X > 0),

with Post => (...);

procedure Q (X, Y : in out Integer)

with Pre => (X > 0 and X > 0),

with Post => (...);

I In both examples, the programmer made a mistake and wrote
X instead Y in the precondition;

I The precondition of P is inconsistent, it can never be true;
without any special mechanism, this subprogram will be
proved correct, regardless of the postcondition;

I The precondition of Q contains a redundant part;

I We propose to detect such situations in GNATprove.


