Contents

Introduction

Overview

SMT Solvers
 Equality Reasoning
 Arithmetic
 Combination of Theories
 Satisfiability
 Combining SAT and the Theories
 Matching

Looking Elsewhere

Conclusion
Automated Theorem Proving

Who does prove Theorems today?

▶ Mathematicians
▶ Hardware verification
▶ Software verification

Automation of proofs

▶ Makes life easier for mathematicians
▶ Makes it possible to state (and prove) thousands of tiny theorems
▶ Makes large-scale verification of hardware and software accessible and more reliable
The ProVal Team

Main Topic: Program proof

- Specification languages
- Computing proof obligations (formulas that imply the correctness of the program)
- Proving proof obligations

Tools (Why Platform)

- Caduceus, Krakatoa: C/Java frontends
- Jessie: Common intermediate language
- Why: Obtain proof obligations from programs
- Alt-Ergo: Automated prover (SMT Solver)
The Why platform

- C/Java Programs
- ML-like Programs

- Jessie
- Coq
- Who
- Pangolin

- Why
- Pangoline

- Z3
- Alt-Ergo
- Coq
A logical formula . . .

\[\text{sorted}(t, i, j) = \]

\[\forall k_1, k_2 : \text{int} . \ i \leq k_1 \land k_1 \leq k_2 \land k_2 \leq j \Rightarrow t[k_1] \leq t[k_2] \]
...as seen by an SMT solver

\[
sorted(t, i, j) = \forall k_1, k_2 : \text{int} \\
\implies i \leq k_1 \land k_1 \leq k_2 \land k_2 \leq j \implies t[k_1] \leq t[k_2]
\]
SMT provers divide the problem in three parts

- The **theory** part: equality reasoning, arithmetic reasoning, . . .
- The **satisfiability** part: deals with logical connectors
 \(\land, \lor, \Rightarrow, \neg, \ldots \)
- The **instantiation** of quantified axioms

We will look at each of the three parts in turn
The different parts of an SMT solver

Theory 1 (Arithmetic)

\[\vdash \]

Theory \(n \)

\[\vdash \]

Union-Find (Equality)

\[\vdash \]

Congruence Closure (Congruence)

\[\vdash \]

Sat-Solver \(\land, \lor, \Rightarrow, \Leftrightarrow \)

\[\vdash \]

Instantiation \(\forall \exists \)
A more detailed example

Hypotheses

- $H_1: a > 0$
- $H_2: \forall xy. x \geq y \rightarrow \max(x, y) = x$

Goal

$G: f(\max(a, 0)) = f(a)$
Negate the Goal

\[H_1 \land H_2 \rightarrow G \] becomes \[H_1 \land H_2 \land \neg G \]

Launch Sat-Solver

Assume \(H_1, H_2 \) and \(\neg G \) and try to derive a contradiction

- Assume the inequality \(a > 0 \)
- Register the lemma: \(\forall x y. x \geq y \rightarrow \max(x, y) = x \)
- Assume the inequality \(f(\max(a, 0)) \neq f(a) \)
- Currently no contradiction!

Instantiation

Specialize the lemma by applying it to \(a \) and \(0 \) and replace \(\rightarrow : \)

\[a \geq 0 \rightarrow \max(a, 0) = a \iff a < 0 \lor \max(a, 0) = a \]
Solved by an SMT Solver (2)

Split the disjunction

First assume $a < 0$, then assume $\neg(a < 0)$, try to find a contradiction in both cases

Assuming $a < 0$

Direct contradiction with H_1 (using knowledge about the symbols $<$ and \geq)

Assuming $\neg(a < 0)$

- It follows $\max(a, 0) = a$
- Deduce $f(\max(a, 0)) = f(a)$
- Contradiction with $\neg G$

We have obtained a contradiction in all cases, the negated formula is unsatisfiable, that means the input formula is valid!
Equality Reasoning

Theory 1 (Arithmetic)

... Theory \(n\)

Union-Find (Equality)

Congruence Closure (Congruence)

Sat-Solver \(\land, \lor, \Rightarrow, \Leftarrow\)

Instantiation \(\forall \exists\)
Equality reasoning - The problem

Terms
\[t ::= c \mid f(t_1, \cdots, t_n) \]

Given
a list of equations \(t = t' \)

We want to know
Does the equation \(t_1 \equiv t_2 \) follow?

Using the axioms

- Reflexivity \(t = t \)
- Symmetry \(t_1 = t_2 \rightarrow t_2 = t_1 \)
- Transitivity \(t_1 = t_2 \land t_2 = t_3 \rightarrow t_1 = t_3 \)
- Congruence \(t_1 = t_2 \rightarrow f(t_1) = f(t_2) \)
Example

Given

- $f^2(a) = f(f(a)) = a$
- $f^5(a) = f(f(f(f(f(a))))) = a$

We want to prove

$f(a) = a$

Proof

1. $f^5(a) = f^3(a)$ (Congruence)
2. $f^2(a) = f^3(a) = a$ (Transitivity, Symmetry)
3. $f^3(a) = f(f^2(a)) = f(a)$ (Congruence)
4. $f(a) = a$ (Transitivity of (2) and (3))
Disjoint Sets

- Goal: deal with the first three axioms efficiently
- Idea: put all terms into disjoint sets
- When two terms are in the same set, they are equal
- Initial state: every term is in his own set:
 \[t_1 \quad t_2 \quad t_3 \quad t_4 \quad t_5 \]

- After treating \(t_1 = t_3 \) and \(t_2 = t_5 \):
 \[t_1 \quad t_3 \quad t_2 \quad t_5 \quad t_4 \]

- After treating \(t_1 = t_2 \):
 \[t_1 \quad t_2 \quad t_3 \quad t_5 \quad t_4 \]

- Deciding \(t = t' \) amounts to checking if \(t, t' \) are in the same set
Union-Find (1975)

- Represent each set by a tree with upward pointers:

 ![Tree Diagram](image)

- The root is the representative
- Operation **find** to find the representative of any term: just follow the arrows
- Operation **union** to treat an equality: simply point one root to the other

 ![Union Example](image)
Two important optimizations

- Keep trees small: let point root of smaller tree to root of larger tree
- Path compression: “flatten” trees, each time we are searching for a root r starting from t, let t point directly to r afterwards
- Result: Algorithm is quasi-linear (optimal)
- Incrementality: we can add equations one by one, interleave equations $t_1 = t_2$ with queries $t_1 \neq t_2$

Inequalities $t_1 \neq t_2$

- Simply maintain the information that two sets of terms must be different
- Merging sets for which an inequality was registered leads to an inconsistency
Deal with the fourth axiom: Congruence

\[\forall xy. x = y \rightarrow f(x) = f(y) \]

for any function symbol \(f \)

Solution: represent a term by a directed acyclic graph (DAG) with sharing. Example: \(f(f(a, b), b) \)

Add an equivalence relation to this graph (using union-find):

represents \(f(f(a, b), b) = a \)
Finding new equalities

- Build a reverse dictionary mapping nodes to their fathers:

\[a \mapsto f(a, b), g(a) \]
\[b \mapsto f(a, b) \]

- Two new operations: \texttt{find} and \texttt{merge}.

```plaintext
merge(t_1, t_2) =
  union(t_1, t_2);
  F_1, F_2 = fathers(t_1), fathers(t_2);
  for each x in F_1, y in F_2 do
    if congruent(x, y) then merge(x, y);
  done
```
Congruence Closure — Example

Given

- $f^2(a) = f(f(a)) = a$
- $f^5(a) = f(f(f(f(f(a)))))) = a$
Congruence Closure — Example

Given

- $f^2(a) = f(f(a)) = a$
- $f^5(a) = f(f(f(f(f(a))))) = a$
Congruence Closure — Example

Given

- $f^2(a) = f(f(a)) = a$
- $f^5(a) = f(f(f(f(f(a))))) = a$
Congruence Closure — Example

Given

- $f^2(a) = f(f(a)) = a$
- $f^5(a) = f(f(f(f(f(a))))) = a$
Given

- \(f^2(a) = f(f(a)) = a \)
- \(f^5(a) = f(f(f(f(f(a))))) = a \)
Theory Reasoning (Arithmetic)

Theory 1 (Arithmetic)

...

Theory n

Union-Find (Equality)

Congruence Closure (Congruence)

Sat-Solver \(\wedge, \vee, \Rightarrow, \Leftrightarrow\)

Instantiation \(\forall, \exists\)
Arithmetic reasoning

Arithmetic

- **Interprets** the function symbols $\mathbf{+, -, \times, \div}$, and the arithmetic constants
- But also the relation symbols $\leq, <, \geq, >$

There are a few algorithms to deal with Linear Arithmetic

- Gauss Elimination (Equality only)
- Fourier-Motzkin
- Simplex Algorithm

We will look more closely at these methods
Gauss Elimination

Goal: deal with equalities in linear arithmetics

- Transform term into sums of monomials: $\sum_i^k c_i t_i$
- When treating an equality between such polynomials

$$\sum_i^k c_i t_i = \sum_j^k d_i s_i$$

isolate a monomial, say, t_1, and build the equation

$$t_1 = \sum_j^k \frac{d_i}{c_1} s_i - \sum_{i \neq 1}^k \frac{c_i}{c_1} t_i$$
Fourier-Motzkin Algorithm (1)

Goal: deal with inequalities in linear arithmetics

basic notions

- An inequality C in canonical form:

$$\sum_{i=1}^{n} a_i x_i \leq a_0 \quad a_i \in \mathbb{Q}$$

- Note αC the multiplication of an inequation with a coefficient α:

$$\sum_{i=1}^{n} \alpha a_i x_i \leq \alpha a_0$$

- Note $C_1 + C_2$ the addition of two inequations:

$$\sum_{i=1}^{n} (a_i + b_i) x_i \leq a_0 + b_0$$
Fourier-Motzkin Algorithm (2)

Set \(I = \{C_1 \cdots C_n\} \) the starting set of inequations. Each step of the algorithm will eliminate a variable from the set of the equations.

- Let \(I^+ (I^-) \) be the set of equations where \(x \) appears with positive (negative) coefficient
- Compute

\[
I_x = \bigcup_{C \in I^-, D \in I^+} \beta C + \alpha D \quad \alpha x \in C, -\beta x \in D
\]

- Let \(I_0 \) the set of inequations in \(I \) without \(x \)
- Replace \(I \) par \(I' = I_0 \cup I_x \)
- In particular, if \(x \) appears only with coefficients of the same sign in \(I \), suppress all inequations where \(x \) appears
- When \(I \) does not contain variables any more, either we have satisfiable inequalities (like \(1 \leq 2 \)) or an inconsistency
Fourier-Motzkin Algorithm (3)

- Complexity: double exponential
- Not incremental
- Still behaves well in practice
- Can be easily extended to deduce equations between terms
Simplex Algorithm (1947)

- Initially designed to solve the optimization problem:

 maximize \(\vec{c} \cdot \vec{x} \)

 subject to \(A\vec{x} \leq \vec{b} \) \(\vec{x} \geq \vec{0} \)

- Complexity: exponential (polynomial in practice)
- Incremental variants exist
Combination of Theories

\[\text{Theory 1 (Arithmetic)} \leftrightarrow \text{Union-Find (Equality)} \leftrightarrow \text{Sat-Solver } \land, \lor, \Rightarrow, \Leftrightarrow \leftrightarrow \text{Instantiation } \forall \exists \]

...
Combination of Theories

We have seen different decision procedures for different theories:

- The theory of uninterpreted function symbols (Congruence Closure)
- Linear arithmetics (Fourier-Motzkin, Simplex)

Other decision procedures exist:

- For the theory of pairs (or lists): nil and cons
- The theory of arrays: get and set
- The theory of bitvectors: get, append, shift

How do they work together?
Consider a term with symbols from multiple theories:

\[\text{car} (\text{cons} (\text{cons} (x, y) + (\text{car} (x) - \text{car} (x)), y + 0)) \]

Variable abstraction

Introduce variables to build pure terms and equations between variables:

- \[z_1 = \text{car} (x) \]
- \[z_2 = \text{cons} (x, y) \]
- \[z_3 = z_2 + (z_1 - z_1) \]
- \[z_4 = y + 0 \]
- \[z_5 = \text{car} (\text{cons} (z_3, z_4)) \]
Nelson Oppen Combination (2)

First step
Transform the problem into n pure problems and a set of equations between auxiliary variables, using variable abstraction

Second step
- Run each decision procedure independently on its pure equations
- Communicate newly discovered equalities to the other decision procedures
Shostak Combination — 1978 (1)

Characteristics

- avoids costly equality propagation in Nelson-Oppen
- Requires a solver instead of a decision procedure: a solver takes an equation $t_1 = t_2$ and returns a substitution $x_i \mapsto t_i$
- Requires a canonizer, putting terms of the theory in normal form (sum of monomials, ...)
- Restriction: applies only to theories of equality (inequalities in linear arithmetic not well supported)
Maintain a table mapping terms to their representatives (for example using an E-Graph with Union-find)

<table>
<thead>
<tr>
<th>Terms</th>
<th>Representatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>t₁</td>
<td>r₁</td>
</tr>
<tr>
<td>t₂</td>
<td>r₁</td>
</tr>
<tr>
<td>t₃</td>
<td>r₂</td>
</tr>
</tbody>
</table>

When treating an equation \(a = b \), call the solver on \(a \) and \(b \), obtain a substitution \(\sigma \) and apply this substitution to all representatives. Finally, canonize all representatives.
Shostak vs. Nelson-Oppen

Comparison

- Shostak supposedly faster (is it in practice?)
- It’s harder to write a solver than it is to write a decision procedure
- Shostak works well in the case of Congruence Closure + other theory
- It is still active research to combine more than just one theory with CC in the Shostak framework
- Most solvers use a Nelson-Oppen like Approach
- Alt-Ergo uses a modified Shostak-like Approach
Theories in SMT solvers: Summary

- SMT solvers use Congruence Closure and various decision procedures for the “Theory part” of SMT
- SMT solvers are generally complete and terminating for conjunctions of atoms in this fragment of the theory
- If they don’t prove the goal, it’s wrong!

Beware

- non-linear arithmetic is undecidable
- on integer arithmetics, many provers use incomplete (but faster) heuristics
Satisfiability

Theory 1 (Arithmetic)

...}

Theory n

Union-Find (Equality)

Congruence Closure (Congruence)

Sat-Solver \(\wedge, \vee, \Rightarrow, \Leftrightarrow \)

Instantiation \(\forall \exists \)
We have seen ...

- How to decide if a conjunction of equalities and inequalities is inconsistent

But what about the other connectors?

- Negation, disjunction, implication, equivalence

This is the work of a SAT-solver
A new input language

Atoms
- Formulas whose structure a SAT-solver will not look at
- Typically, equalities / inequalities, predicates
- Examples: $x = 0$, $x \leq f(x) + 3$, $\text{even}(t)$

Literal
An atom, with or without negation sign \neg

Conjunctive Normal form (CNF)
- A formula in CNF is a conjunction of disjunctions:

 $$(a \lor b \lor \neg b) \land (b \lor c) \land (\neg c \lor d \lor e)$$

- The disjunctions are called clauses
- This is the input language of a SAT solver
Sat Solvers

- Decide if a formula in CNF is satisfiable
- In a satisfiable formula one can assign a truth value to each atom so that the formula becomes true
- Such an assignment is called a model
- This problem is NP-complete
Putting formulas in CNF

We won’t talk about it here, we just mention...

- That the naive way of doing it leads to a formula that is exponentially bigger than the original one
- There are smarter ways of doing it that produce a CNF linear in the size of the original formula, but the formula is still much bigger
- One can do the conversion lazily, during the execution of the SAT algorithm (makes the algorithm more complicated)
The DPLL method

- Invented by Davis, Putnam (1960) and Davis, Logemann, Loveland(1962)
- Is an intelligent exhaustive search of a model for the input formula

A Unit Clause

- Is a clause which consists of a single literal
- This literal must be true if the formula is satisfiable
DPLL (2)

Boolean Constraint Propagation (BCP)

- Search for a unit clause and assume the corresponding literal \(l \) to be true
- Each literal of the form \(\neg l \) is removed
- Each clause which contains \(l \) (positively) is removed
- Repeat

Case splitting

- Choose an arbitrary literal \(l \) occurring in the formula
- Try to find a model where \(l \) is true
- If there is none, try to find a model where \(\neg l \) is true (backtracking)
- If there is none either, the formula is unsatisfiable
DPLL (3)

The algorithm

- As long as there are unit clauses, do BCP (simplify current formula)
- If there are no unit clauses, do a case split
- If the current formula contains the empty clause, it is unsatisfiable; backtrack

The algorithm as inference rules

- Axiom: \(\Gamma \vdash \Delta, \emptyset \)
- Unit: \(\Gamma, l \vdash \Delta \rightarrow \Gamma \vdash \Delta, l \)
- Elim: \(\Gamma, l \vdash \Delta \rightarrow \Gamma, l \vdash \Delta, l \lor C \)
- Reduce: \(\Gamma \vdash \Delta, C \rightarrow \Gamma, l \vdash \Delta, \neg l \lor C \)
- Split: \(\Gamma, l \vdash \Delta \rightarrow \Gamma \vdash \Delta \)
DPLL(4)

- DPLL is correct and complete
- Choice of the splitting variable is very important
- There are many heuristics to choose it

Check for the validity of a formula using DPLL

- Negate the input formula
- Search for a model of this formula (DPLL)
- If there is none, the formula is valid
- Otherwise the discovered model is a counterexample
Combining SAT and the theories

Theory 1 (Arithmetic)

\[\vdash\] \[\equiv\] \[\Rightarrow\]

\[\vdash\]

Union-Find (Equality)

Sat-Solver \(\land, \lor, \Rightarrow, \Leftrightarrow\)

\[\vdash\]

Instantiation \(\forall, \exists\)

Theory \(n\)

Congruence Closure (Congruence)
SAT and the Theory working together

The General Idea

- SAT decomposes the logical structure of the formula
- Each assumed literal is given to the appropriate theory
- which one? consider $t.\,[i - 1] = x + y$
- A conflict can be detected in two ways:
 - The SAT: We have found the empty clause
 - The Theory: We have derived an absurd statement in some (combination of) theories

\[x = x + 1 \]
DPLL — Backjumping

Optimisation

▶ Reconsider the Split rule:

\[
\text{Split} \quad \frac{\Gamma, l \vdash \Delta \quad \Gamma, \neg l \vdash \Delta}{\Gamma \vdash \Delta}
\]

▶ Backtracking to \(\neg l\) not always needed!
▶ When \(l\) is not involved in the inconsistency in the left branch, then one does not need to check the branch of \(\neg l\)

Collaboration needed

▶ The **SAT** must be able to explain conflicts
▶ The **Theory** must be able to explain conflicts
Instantiation

Theory 1
(Arithmetic)

\[\vdash \]

Union-Find
(Equality)

\[\vdash \]

Sat-Solver
\(\land, \lor, \Rightarrow, \Leftrightarrow \)

\[\vdash \]

Instantiation
\(\forall \exists \)

Theory \(n \)

Congruence Closure
(Congruence)
Example

Axiom $A : \forall x : \text{int}. f(g(x), 0) = 0$

- Potentially, for any term t of integer type, add $f(g(t), 0) = 0$ to the knowledge base
- Where do the terms t come from?
- Usually, the nodes of the E-graph are considered (the set of ground terms)
- This is incomplete (a proof may require to invent a new term)
- Problem: taking all terms of integer type to instantiate axiom A is too much
Restricting the set of terms to consider

- Idea: do not allow instantiation of all terms of the right type
- Add a trigger, a term of a certain form to the axiom:
- Axiom \(A : \forall x : \text{int}[g(x)].f(g(x), 0) = 0 \)
- Instantiate \(x \) only with terms \(t \) for which ground term \(g(t) \) exists
- This is an heuristics (even more incomplete)
- Triggers can be given by the user, or computed by the prover
Triggers (2)

Matching

- Given a term \(t \) with variables and a ground term \(t' \), try to find a substitution \(\sigma \) for the variables in \(t \) such that \(t\sigma = t' \)
- This substitution is used to instantiate the entire axiom

Considerations

- A trigger can consist of several terms
- The trigger term(s) should contain all variables of the axiom
- The process of comparing the ground terms with the trigger is called matching
- A large trigger is more restrictive than a small trigger: We instantiate less (which is good), but we may miss necessary instantiations
- A variable as trigger is as good (as bad) as no trigger
E-Matching

Use the E-Graph to enhance matching

- Use the equality information of the E-graph to match more terms
- Example: The E-graph of $f(a) = a$ actually describes also $f(f(a))$ and $f(f(f(a)))$...

\[
\begin{tikzpicture}
 \node (a) at (0,0) {a};
 \node (f) at (1,0) {f};
 \draw[->] (a) to (f);
\end{tikzpicture}
\]

- A trigger of the form $f(a)$ can be instantiated by any $f^n(a)$
Skolemization

What to do with existential quantifiers?

▶ We can eliminate them using Skolemization
▶ An axiom \(\exists x. P(x) \) becomes \(P(c) \) for a fresh Skolem constant \(c \)
▶ If quantifiers are nested:

\[
\forall x \exists y. P(x, y)
\]

becomes

\[
\forall x. P(x, f(x))
\]

for a fresh Skolem function \(f \)
The Big Picture (1)

- Take a first-order formula as input
- Negate it — try to prove that the negation is unsatisfiable
- Eliminate Existentials (Skolemization)
- Compute triggers (if not given) for quantifiers
- Put it in CNF (or do it lazily)
- Run the SAT solver on the CNF
- Every assumed atom is given to the theories
- Inconsistencies can be detected by
 - the SAT: an empty clause present
 - the theory: set of assumed literals is inconsistent wrt. the theory
- At some point (when? how often?), do Matching to instantiate axioms, obtain new terms and new facts
The Big Picture (2)

- SMT provers are generally complete over the SAT + theory part (with restrictions)
- SMT provers are incomplete over the matching/instantiation part

SMTLib, SMTComp

- There is a common input format accepted by most SMT solvers: SMTLib
- SMT provers: Alt-Ergo, Z3, Yices, CVC3 (all with quantifiers and theories), MathSat, Boolector (without quantifiers)
- There is an annual competition with many different categories: with/without quantifiers, arithmetics, bit-vectors, arrays, ...
- 2009 winner: mostly Yices (in categories without quantifiers) and CVC3 (in categories with quantifiers)
- in a few categories, 2008 winner Z3 was actually faster (but not officially part of 2009 competition)
Unification
Generalization of Matching: Given two terms t_1 and t_2 both containing variables, find a substitution σ such that $t_1\sigma = t_2\sigma$.

Resolution rule

\[
\begin{align*}
\text{Resolution} & \quad \frac{C_1 \lor l_1 \quad C_2 \lor \neg l_2 \quad \sigma = \text{unif}(l_1, l_2)}{C_1\sigma \lor C_2\sigma}
\end{align*}
\]

Example

\[
\begin{align*}
\text{Resolution} & \quad \frac{\neg P(x) \lor Q(x) \quad P(a) \quad \sigma = [x \mapsto a]}{Q(a)}
\end{align*}
\]
Resolution based provers (2)

Algorithm

- Just as SMT solvers, negate formula, skolemize and put in CNF
- Now, using the Resolution rule, derive new clauses
- When encountering the empty clause, the initial formula was valid

TPTP Competition

- Participants: Vampire, Spass, E, ...
- Recent winners of various categories: Vampire, Waldmeister
Resolution based provers (3) - Comparison

Advantages

▶ Resolution is complete for first-order logic
▶ It implements a semi-decision procedure:
 ▶ If the formula is valid, the algorithm eventually stops, with the right answer
 ▶ If the formula is invalid, it may run forever
▶ Resolution is much better at proving complex theorems without arithmetic reasoning

Disadvantages

▶ Integrating equality reasoning is difficult, but has been mastered: Superposition, Paramodulation
▶ Integration of arithmetic or other theories is currently out of reach of the state of the art
Tableau based provers (Zenon)

Tableau method

▷ Do not transform formula into CNF, but do negate it
▷ Apply rules to formula to build a refutation tree
▷ Rules for conjunction and disjunction:

\[
A \land B \\
 \downarrow \\
 A \\
 \downarrow \\
 B \\
\]

\[
A \lor B \\
 \downarrow \\
 A \\
 \downarrow \\
 B \\
\]

▷ If a branch contains a contradiction \((A \land \neg A, x \neq x, False, \ldots)\), it is closed
▷ When all branches are closed, the negated formula is unsatisfiable
▷ Prominent prover in this class: Zenon
▷ It is the only prover that produces a machine-checkable proof
▷ Tableau method generally considered to be slower than
Conclusion

SMT provers . . .

- Divide the input formula into a theory part, a propositional part, and lemmas
- Are complete wrt. the propositional part, and selected theories
- Are incomplete in general
- The combination of decision procedures, but also the combination of the SAT solver and the theories are the main challenges of SMT