Why
—an intermediate language
for deductive program verification

Jean-Christophe Filliâtre

CNRS
Orsay, France

AdaCore
November 5, 2009
Motivations

how to do **deductive program verification** on realistic programs?

- deductive verification means that we want to prove safety but also behavioral correctness, with arbitrary proof complexity

- realistic programs means pointers, aliases, dynamic allocation, arbitrary data structures, etc.
since **Hoare logic** (1968), we know how to turn a program correctness into logical formulas, the so-called verification conditions.

we could

- design Hoare logic rules for a real programming language
- choose an interactive theorem prover

the Why approach: don’t do that!
instead,

- design a **small** language dedicated to program verification and compile complex programs into it
- use as **many theorem provers** as possible (interactive or automatic)
there is another such tool: the **Boogie** tool developed at Microsoft Research, initially in the context of the SPEC# project (Barnett, Leino, Schulte)

there are differences but the main idea is the same: verification conditions should be computed on a small, dedicated language
Overview

1. the **WHY** language
 and its application to the verification of algorithms

2. **WHY** as an intermediate language for program verification
 complete example with a C program
The essence of Hoare logic

the essence of Hoare logic fits in the rule for assignment

\[
\{ P[x ← E] \} \ x := E \ \{ P \}
\]

two key ideas

- there is no alias, since only variable \(x \) is substituted
- the pure expression \(E \) belongs to both logic and program
The essence of Hoare logic

WHY captures these ideas

- programs can manipulate pure values (i.e. logical terms) arbitrarily
- the sole data structures are mutable variables containing pure values
- any program that would create an alias is rejected
a **Why** file contains

- **logical declarations**

  ```plaintext
  logic a : int
  logic f : int, int -> int
  axiom A : forall x: int. ...
  type set
  ```

- **variable/program declarations**

  ```plaintext
  parameter x : int ref
  parameter p1 : a: int -> ...
  ```

- **program implementations**

  ```plaintext
  let p2 (x: int) (y: int) = ...
  ```
Predefined Types

a few types and symbols are predefined

- a type `int` of arbitrary precision integers, with usual infix syntax
- a type `real` of real numbers
- a type `bool` of booleans
- a singleton type `unit`
one nice idea taken from functional programming: no distinction between expressions and statements

⇒ less constructs, thus less rules
⇒ side-effects in expressions for free

but **Why** is not at all a functional language
A First Example

let us check that n is even with the following (rather stupid) code

\[
\text{while } n \geq 2 \\
\quad n \leftarrow n - 2 \\
\text{return } n = 0
\]
A First Example

we first introduce the predicate even, as an uninterpreted predicate with two axioms

```
logic even : int -> prop

axiom even0 :
    even(0)

axiom even2 :
    forall n: int. n >= 0 -> even(n) -> even(n+2)
```
the program \texttt{is_even} is a function with \texttt{n} as argument

its body is a Hoare triple

\begin{verbatim}
let is_even (n: int) =
 { n >= 0 }
...
 { result=true -> even(n) }
\end{verbatim}

in the postcondition, \texttt{result} is the returned value, i.e. the value of the function body (which is an expression)
A First Example

we introduce a local mutable variable \(x \) initialized to \(n \)

```ocaml
let is_even (n : int) =
{ n >= 0 }
let x = ref n in
...
{ result=true -> even(n) }
```
finally, we add the \texttt{while} loop and its invariant

\begin{verbatim}
let is_even (n: int) =
{ n >= 0 }
let x = ref n in
while !x >= 2 do
 { invariant even(x) \rightarrow even(n) }
 x := !x - 2
done;
!x = 0
{ result=true \rightarrow even(n) }
\end{verbatim}
A First Example

we are ready for program verification

two options

- command line tool

 `why --smtlib even.why`

 `why --pvs even.why`

- GUI to display verification conditions and launch provers
termination can be proved by adding a **variant** to the loop annotation

```why
let is_even (n: int) = 
  { n >= 0 }
let x = ref n in
while !x >= 2 do
  { invariant even(x) -> even(n)
    variant x }
  x := !x - 2
done;
!x = 0
{ result=true -> even(n) }
```

Jean-Christophe Filliâtre
Why tutorial
AdaCore, Nov 2009

to get completeness, we add the axiom

\textbf{axiom even_inv :}
\begin{quote}
\texttt{forall n:int. even(n) \rightarrow n=0 or (n \geq 2 and even(n-2))}
\end{quote}

and we turn the postcondition (and the invariant) into an equivalence

\begin{verbatim}
let is_even (n: int) =
{ n \geq 0 }

...

{ result=true <-> even(n) }
\end{verbatim}
Previous Values of a Variable

A function argument can be a mutable variable here, it simplifies the code

```ocaml
let is_even2 (n: int ref) =
    while !n >= 2 do
        n := !n - 2
    done;
    !n = 0
```

but it complicates the specification, since values of n at different program steps are now involved
Previous Values of a Variable

in a postcondition, \(n@ \) stands for the value of \(n \) in the pre-state

```why
let is_even2 (n: int ref) =
{ n >= 0 }
...
{ result=true <-> even(n@) }
```
more generally, a program point can be labelled (like for a goto) and then \(x@L \) stands for the value of \(x \) at point \(L \)

here it is used to refer to the value of \(n \) before the loop

```why
let is_even2 (n: int ref) =
{ n >= 0 }
L:
while !n >= 2 do
{ invariant even(n) <-> even(n@L) }
...
```
Why favors the use of **labels** instead of the traditional **auxiliary variables**, since it simplifies the VCs.

Note that it is yet possible to use auxiliary variables, if desired: simply add extra arguments to functions.
WHY supports recursive functions

let rec is_even_rec (n:int) : bool {variant n} =
{ n >= 0 }
if n >= 2 then is_even_rec (n-2) else n=0
{ result=true <-> even(n) }
Why also features

- **polymorphism**, in both logic and programs
- **exceptions** in programs, and corresponding annotations
- **local assertions**
- **modularity**, i.e. verification only depends on specifications

all of these features are illustrated in the following
let us consider a more complex program: Dijkstra’s algorithm for single-source shortest path in a weighted graph

we are going to use Why to verify the algorithm i.e. a high-level pseudo-code, e.g. from the Cormen-Leiserson-Rivest, not an actual implementation in a given programming language
Dijkstra’s Shortest Path

single-source shortest path in a weighted graph

\[S \leftarrow \emptyset \]
\[Q \leftarrow \{ \text{src} \}; \]
\[d[\text{src}] \leftarrow 0 \]
while \(Q \setminus S \) not empty do
 extract \(u \) from \(Q \setminus S \) with minimal distance \(d[u] \)
 \[S \leftarrow S \cup \{ u \} \]
 for each vertex \(v \) such that \(u \xrightarrow{w} v \)
 \[d[v] \leftarrow \min(d[v], d[u] + w) \]
 \[Q \leftarrow Q \cup \{ v \} \]
Dijkstra’s Shortest Path: Finite Sets

we need **finite sets** for the program and its specification

- set of vertices V
- set of successors of u
- sets S and Q

all we need is

- the empty set \emptyset
- addition $\{x\} \cup s$
- subtraction $s \setminus \{x\}$
- membership predicate $x \in s$
let us axiomatize polymorphic sets

```plaintext
type 'a set

logic set_empty : 'a set
logic set_add : 'a, 'a set -> 'a set
logic set_rmv : 'a, 'a set -> 'a set
logic In : 'a, 'a set -> prop

predicate Is_empty(s : 'a set) =
  forall x: 'a. not In(x, s)

predicate Incl(s1 : 'a set, s2 : 'a set) =
  forall x: 'a. In(x, s1) -> In(x, s2)
```
Dijkstra’s Shortest Path: Finite Sets

axiom set_empty_def :
 Is_empty(set_empty)

axiom set_add_def :
 forall x,y: ’a. forall s: ’a set.
 In(x, set_add(y,s)) <-> (x = y or In(x, s))

axiom setrmv_def :
 forall x,y: ’a. forall s: ’a set.
 In(x, set_rmv(y,s)) <-> (x <> y and In(x, s))
Dijkstra’s Shortest Path: the Weighted Graph

The graph is introduced as follows

```plaintext
type vertex

logic V : vertex set

logic g_succ : vertex -> vertex set

axiom g_succ_sound : forall x: vertex. Incl(g_succ(x), V)

logic weight : vertex, vertex -> int (* a total function *)

axiom weight_nonneg : forall x,y: vertex. weight(x,y) >= 0
```
the set S of visited vertices is introduced as a global variable containing a value of type vertex set

\[\text{parameter } S : \text{ vertex set ref} \]

to modify S, we could use assignment (\(:=\)) directly, but we can equivalently declare a function

\[\text{parameter } S_\text{add} : \]
\[x : \text{ vertex } \rightarrow \{\} \text{ unit writes } S \{ S = \text{set_add}(x, S@) \} \]

which reads as “function S_add takes a vertex x, has no precondition, returns nothing, modifies the contents of S and has postcondition $S = \text{set_add}(x, S@)$”
we proceed similarly for the priority queue

```ada
parameter Q : vertex set ref

parameter Q_is_empty :
  unit ->
  { } // nil
  bool reads Q
  { if result then Is_empty(Q) else not Is_empty(Q) }

parameter init :
  src: vertex -> { } ...

parameter relax :
  u: vertex -> v: vertex -> { } ...
```
17 VCs are generated
they are all automatically discharged, with the help of two lemmas
these two lemmas are proved using an interactive proof assistant (they require induction)
using Why as an intermediate language
let us say we want to verify programs written in a language such as C or Java; what do we need?

- to cope with complex **data structures** (arrays, pointers, records, objects, etc.) and possible **aliasing**
- to cope with **new control statements** such as `for` loops, abrupt return, `switch`, `goto`, etc.
- to cope with memory allocation, function pointers, dynamic binding, casts, machine arithmetic, etc.
WHY can be used conveniently to handle most of these aspects

two connected parts

- we design a **memory model**, that is a set of logical types and operations to describe the memory layout

- we design a **compilation** process to translate programs in WHY constructs
A Simple Example

let us consider the following C code

```c
int binary_search(int* t, int n, int v) {
    int l = 0, u = n-1;
    while (l <= u) {
        int m = (l + u) / 2;
        if (t[m] < v)
            l = m + 1;
        else if (t[m] > v)
            u = m - 1;
        else
            return m;
    }
    return -1;
}
```
Binary Search

two (simple) problems with this code

- C pointers (but no pointer arithmetic, i.e. arrays)
  ```c
  int binary_search(int* t, int n, int v) { ... 
  ```

- an abrupt return in the while loop
  ```c
  while (l <= u) {
    if ... 
    else 
      return m;
  }
  ```
we consider a very simple memory model here

```why

type pointer

type memory

logic get : memory, pointer, int -> int

parameter mem : memory ref
  (* the current state of the memory *)
```

Jean-Christophe Filliâtre
Why tutorial
some remarks at this point

- we assume the memory to be accessed by words (type int); accessing the same portion of memory using a char* pointer would require a finer model

- C local variables can be translated into WHY local variables, unless their address is taken
thus the code looks like

```
let binary_search (t: pointer) (n: int) (v: int) = {
  ...
}

let l = ref 0 in
let u = ref (n-1) in
while !l <= !u do
  let m = (!l + !u) / 2 in
  if get !mem t m < v then l := m + 1
  else if get !mem t m > v then u := m - 1
  else ...
  done
...
```
to interpret the return statement we introduce an exception

 exception Return_int of int

the whole function body is put into a try/with statement

 let binary_search (t: pointer) (n: int) (v: int) =
 try
 ...
 with Return_int r ->
 r
 end

and any return e is translated into

 raise (Return_int e)
with suitable annotations for correctness, completeness and termination, we get 17 VCs

with the help of the axiom

```
axiom mean_1: forall x,y:int.  x <= y -> x <= (x+y)/2 <= y
```

all VCs are discharged automatically

demo
let us say we want to add **array bound checking**

we need to refine our model with a notion of **block size**

```
logic block_size: memory, pointer -> int
```

it is then convenient to introduce a *function* to access memory

```
parameter get_:  
p: pointer -> ofs: int ->  
  \{ 0 <= ofs < block_size(mem, p) \}  
  int reads mem  
  \{ result = get(mem, p, ofs) \}
```

so that its precondition introduces the suitable VC
we get 2 additional VCs, easily proved once we add the suitable requirement

```ml
let binary_search (t: pointer) (n: int) (v: int) =
  { n >= 0 and block_size(mem, t) >= n and ... }
...
```
finally, let us model **32 bit integers**,

two possibilities
 - to prove that there is no arithmetic overflow
 - to model modulo arithmetic faithfully

one requirement:
we do not want to loose the arithmetic capabilities of the provers
we introduce a new type for 32 bit integers

\[
\text{type int32}
\]

the value of an int32 is given by

\[
\text{logic to_int: int32 \rightarrow int}
\]

annotations only use arbitrary prevision integers, i.e. if \(x \) of type int32 appears in an annotation, it is actually to_int(\(x \))
we need to set the range of 32 bit integers

when using them...

\begin{verbatim}
axiom int32_domain:
 forall x:int32. -2147483648 <= to_int(x) <= 2147483647
\end{verbatim}

... and when building them

\begin{verbatim}
parameter of_int :
 x:int ->
 { -2147483648 <= x <= 2147483647 }
 int32
 { to_int(result) = x }
\end{verbatim}
and that’s it!

let us prove the absence of integer overflow in binary search

demo
we found a bug (that is the purpose of verification, after all)

indeed, when computing

\[
\text{int } m = (l + u) / 2;
\]

the addition \(l+u\) may overflow
(for instance on a 32 bit architecture with arrays of billions of elements)

it can be fixed as follows

\[
\text{int } m = l + (u - 1) / 2;
\]
Conclusion
Things Not Discussed in that Tutorial

regarding **WHY** itself

- how to exclude aliases
- how to send VCs to all provers (typing systems differ)
- how to compute VCs efficiently

regarding the use of **WHY**

- how to design a high-level specification language
- how to design a more subtle memory model (component-as-array, regions, etc.)
- how to model floating-point arithmetic
Existing Software

in the ProVal team, we develop the following softwares

- **Jessie**, another intermediate language on top of **WHY**
- **Krakatoa**, a tool to verify JML-annotated Java programs
- **Alt-Ergo**, an SMT solver with **WHY** syntax as input

we also collaborate to **Frama-C**, a platform to verify C programs (which subsumes the tool Caduceus formerly developed at ProVal)

our tools deal with **floating-point arithmetic**: annotations, models, interactive and automatic proofs
Automatic Provers:
Alt-Ergo, CVC3, Simplify, Yices, Z3, etc.

Proof Assistants:
Coq, HOL, Isabelle/HOL, PVS, etc.
thank you