GENEAUTO

Status of new Airbus case Studies

Presented by
Jean-Charles DALBIN
Airbus Operations SAS
&
Laurent DUFFAU
Airbus Operations SAS
Agenda

1/ OBSYS (EADS research demonstrator):
 - Primary Flight Control case study:
 - Part of laws function (using vector based controller)
 - Part of logics function (using state machines)

2/ AIRBUS internal research activities:
 - “Real life” Avionics case study:
 - Weight and Balance Backup Computation Function (Experimentation on a complete Simulink specification (equiv to 100 SCADE nodes)
 - Gene-auto evaluation to produce AP2633 code for simulation

3/ Feedback on Code Customization

4/ Global Status
OBSYS : Flight control laws function - Overview

- **Aim:**
 - Use a vector based approach for the laws function to enhance the capability of the design
 - Test the capability to generate certified code with the discrete vector based model, and compare it to the one from the current AIRBUS tools

- **Context:**
 - Part of flight control laws function (Flight Control Primary Computer A340-600)
 - Target cpu Intel 486
 - Multi-rate : 10 ms & 40 ms
 - Simulink model : Vectors, 30 blocks, 2 levels of hierarchy
OBSYS : Flight control laws function - Re-Design
OBSYS : Flight control laws function - Status

<table>
<thead>
<tr>
<th></th>
<th>Generation (Gene-Auto without optimization tool) with Geneauto symbols</th>
<th>Generation (Gene-Auto without optimization tool) with AIRBUS backends</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design</td>
<td>Re-design part of laws function (25 SAO sheets) to a vector based Simulink (one model for C1, one model for C3)</td>
<td></td>
</tr>
<tr>
<td>Code Generation</td>
<td>OK</td>
<td>39 backends have been developed to optimize symbols</td>
</tr>
<tr>
<td>Compilation</td>
<td>OK + Link Gene-Auto source code with the other part of the design (SAO sheets)</td>
<td></td>
</tr>
<tr>
<td>Integration on target</td>
<td>Operation overflow detected after 9 steps of computation (cycles)</td>
<td>=> Investigation on going</td>
</tr>
<tr>
<td>Functional verification on target</td>
<td>TO DO</td>
<td>TO DO</td>
</tr>
<tr>
<td>CPU Performance analysis</td>
<td>TO DO</td>
<td>TO DO</td>
</tr>
</tbody>
</table>
OBSYS : Flight control logics function - Overview

• **Aim:**

 ‣ Use state machines for the mode computation to split logics to enhance the capability of the design

 ‣ Test the capability to generate certified code with model using state machine, and compare it to the one from the current AIRBUS tools

• **Context:**

 ‣ Part of flight control logics function (Flight Control Primary Computer A340-600)

 ‣ Target cpu Intel 486

 ‣ Mono-rate : 40 ms

 ‣ Simulink & Stateflow model : 75 blocks, 3 levels of hierarchy, 5 states
Symbols Mrtrig & Bascr have been replaced by symbols Pulse + 1 automaton with 5 states.
OBSYS : Flight control logics function - Status

<table>
<thead>
<tr>
<th></th>
<th>Generation (Gene-Auto without optimization tool) with AIRBUS backends</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design</td>
<td>Re-design a part of logics function with state machine</td>
</tr>
<tr>
<td></td>
<td>(Mrtrig & Bascr have been replaced by Pulse + 1 state</td>
</tr>
<tr>
<td></td>
<td>machine with 5 states)</td>
</tr>
<tr>
<td>Code Generation</td>
<td>OK</td>
</tr>
<tr>
<td>Compilation</td>
<td>OK</td>
</tr>
<tr>
<td>Integration on target</td>
<td>OK</td>
</tr>
<tr>
<td>Functional verification on target</td>
<td>OK</td>
</tr>
<tr>
<td></td>
<td>(same functional behaviour as SAO model reference)</td>
</tr>
<tr>
<td>CPU Performance analysis</td>
<td>=> Cpu time consumption measured :</td>
</tr>
<tr>
<td></td>
<td>multiplied by 2</td>
</tr>
<tr>
<td></td>
<td>=> Memory consumption measured : TBC</td>
</tr>
<tr>
<td></td>
<td>=> Waiting for i486 model from Ait for WCET computation and analysis</td>
</tr>
</tbody>
</table>
Agenda

1/ OBSYS (EADS research demonstrator):
 - Primary Flight Control case study:
 - Part of laws function (using vector based controller)
 - Part of logics function (using state machines)

2/ AIRBUS internal research activities:
 - “Real life” Avionics case study:
 - Weight and Balance Backup Computation Function (Experimentation on a complete Simulink specification (equiv to 100 SCADE nodes)
 - Gene-auto evaluation to produce AP2633 code for simulation

3/ Feedback on Code Customization

4/ Global Status
“Real-life” Avionics function Case Study

• **Aim:**
 - Evaluate the complete software application process using Simulink/Gene-Auto toolchain on a selected avionics function
 - Test the capability to generate certified code on a data flow Simulink design, and compare it to the one from the current SCADE tools used in AIRBUS

• **Context:**
 - **Weight & Balance Backup Computation function**
 - (CPIOM computer **A380**)
 - Target power PC 755
 - Mono-rate : 40 ms
 - Simulink model : 107 models, 197 blocks, 2 levels of hierarchy
“Real life” Avionics function Case Study - Status

<table>
<thead>
<tr>
<th>Generation (Gene-Auto without optimization tool) with AIRBUS backends</th>
</tr>
</thead>
</table>
| **Simulink Model** | Original Simulink model split in 107 elementary models (for sequencing purpose)
Code generation performance to be checked on the complete original model (>several hours?) |
| **Code Generation** | OK
But some issues have been detected during backend development:
Structured data, empty mask, order attributes
⇒Trackers opened |
| **Compilation** | To Do |
| **Integration on target** | To Do |
| **Functional verification on target** | To Do |
| **Performance analysis** | To Do |
Gene-Auto benchmark for Simulation AP2633 code

Context:
Simulation models: hydraulics, engine…
- For Aircraft 0 (simulation + real equipment), Aircraft –1 (virtual equipment), OCASIME (desktop simulation)
- Host PC Linux, PC windows (for local verification)
- Simulink models provided by several system vendors

Aim:
- Replace RTW as much as possible…
 (lower licence costs, more flexible tool…)
- Customize Gene-Auto in order to produce AP2633 compliant source code without additional post-processing

Status: On-going
Agenda

1/ OBSYS (EADS research demonstrator):
 - Primary Flight Control case study:
 - Part of laws function (using vector based controller)
 - Part of logics function (using state machines)

2/ AIRBUS internal research activities:
 - "Real life" Avionics case study:
 - Weight and Balance Backup Computation Function (Experimentation on a complete Simulink specification (equiv to 100 SCADE nodes)
 - Gene-auto evaluation to produce AP2633 code for simulation

3/ Feedback on Code Customization

4/ Global Status
Feedback on code customization with Gene-Auto

• Local customization (at block level)
 ‣ Call to external code by using `lib.xml`
 – call to a C function
 – TBC for macros
 ‣ Develop `backend`
 – use Macro instead of function (for using embedded symbol library)
 – compute constants (to reduce CPU consumption)
 – add instructions (ex: pragmas, data…)

• Global code customization (at model level)
 ‣ The development of an additional tool is on-going.
 This tool is placed between CodeGenerator and Printer.
 – add external dependencies (includes)
 – add instructions for verification tools (WCET tool…)
1/ OBSYS (EADS research demonstrator)
 - Primary Flight Control case study:
 - Part of laws function (using vector based controller)
 - Part of logics function (using state machines)

2/ AIRBUS internal research activities:
 - “Real life” Avionics case study:
 - Weight and Balance Backup Computation Function (Experimentation on a complete Simulink specification (equiv to 100 SCADE nodes)
 - Gene-auto evaluation to produce AP2633 code for simulation

3/ Feedback on Code Customization

4/ Global Status
Global status

• 16 Problem reports opened (Mantis tool)
• Good reactivity from Krates
• Sufficient level of maturity of Gene-Auto at this stage
• Toolset architecture (developers feedback):
 ▸ Several tools allow more flexibility (to add new tool…) and Model Driven Architecture gives a strong evolution potential

• To be Done:
 ▸ Solve the problem of access to data with separate models
 ▸ Optimize source code with Gene-auto optimizer and use of cache memory
 ▸ Analyse cpu consumption for part of flight control logics function (StateFlow)
 ▸ Look at structure of source code regarding certification issues

Ce document et son contenu sont la propriété d’AIRBUS FRANCE S.A.S. Aucun droit de propriété intellectuelle n’est accordé par la communication du présent document ou son contenu. Ce document ne doit pas être reproduit ou communiqué à un tiers sans l’autorisation expresse et écrite d’AIRBUS FRANCE S.A.S. Ce document et son contenu ne doivent pas être utilisés à d’autres fins que celles qui sont autorisées.

Les déclarations faites dans ce document ne constituent pas une offre commerciale. Elles sont basées sur les postulats indiqués et sont exprimées de bonne foi. Si les motifs de ces déclarations n’étaient pas démontrés, AIRBUS FRANCE S.A.S serait prêt à en expliquer les fondements.